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a b s t r a c t

A powerful method for partitioning mixed-mode fractures on rigid interfaces in laminated unidirectional
double cantilever beams (DCBs) is developed by taking 2D elasticity into consideration in a novel way.
Pure modes based on 2D elasticity are obtained by introducing correction factors into the beam-
theory-based mechanical conditions. These 2D-elasticity-based pure modes are then used to derive a
2D-elasticity-based partition theory for mixed-mode fractures. Excellent agreement is observed between
the present partition theory and Suo and Hutchinson’s partition theory (Suo and Hutchinson, 1990) [1].
Furthermore, the method that is developed in this work has a stronger capability for solving more complex
mixed-mode partition problems, for example, in the bimaterial case (Suo and Hutchinson, 1990) [1].

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The present work revisits the partitioning of mixed-mode
fractures in laminated unidirectional composite double cantilever
beams (DCBs) with rigid interfaces by taking 2D elasticity into
consideration in a novel way. In Suo and Hutchinson’s work [1],
conventional 2D elasticity theory is employed in conjunction with
stress intensity factors in order to give accurate partitions. This
conventional approach however often has limitations in dealing
with more complex problems, for example, in the bimaterial case
where the partition relies on extensively tabulated numerical
results over a finite range of geometries and material configura-
tions [1]. The present work aims to develop a novel and powerful
method to calculate energy release rate (ERR) partitions with the
same level of accuracy as in Suo and Hutchinson’s work [1]. Fur-
thermore, it aims for the method to have a stronger capability for
solving more complex mixed-mode partition problems (like the
bimaterial one described above) than the conventional method in
Ref. [1] has. The structure of the paper is as follows. The novel
method is developed in Section 2. Comparisons with several exist-
ing partition theories are presented in Section 3. In particular,
these comparisons include ones against Suo and Hutchinson’s
partition theory [1] since it is regarded as the most accurate.
Conclusions are made in Section 4.

2. Development of the novel method

Fig. 1a shows a laminated unidirectional composite DCB with
its geometry and tip bending moments M1 and M2, and axial forces
N1 and N2. The crack influence zone extends to a point A, a
Da-distance ahead of the crack tip B. Fig. 1b only shows the sign
convention of the interface normal stress rn and shear stress ss

instead of any representative distribution. Beyond point A, both
the normal stress rn and shear stress ss becomes zero.

Based on the authors’ previous work [2–5], the total ERR G is
calculated as follows:
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where N1Be = N1B � N2B/c with c = h2/h1, b is the width of the beam,
and E is the effective axial Young’s modulus for orthotropic mate-
rial; for isotropic material then E ¼ E=ð1� m2Þ for plane strain and
E ¼ E for plane stress where E is the Young’s modulus and m the
Poisson’s ratio [1]. M1B and M2B are the two bending moments at
the crack tip B, and N1B and N2B are the axial forces at the crack
tip B. Other symbols have their conventional meanings. G is of qua-
dratic form in terms of M1B, M2B and N1Be with the coefficient matrix
[C], which is given in full in the Appendix A. The total ERR is the
same for both the Euler and Timoshenko beam theories and for
2D elasticity theory. The mode I and II partitions of ERR are however
different. Approximate 2D partition theories have been given in
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Refs. [2–4]. Here, a partition theory of the same level of accuracy as
that of the work in Ref. [1] is obtained by developing a novel and
powerful method.

By using the same hypothesis as in Refs. [2–4,6], namely that
there generally exist two sets of orthogonal pure modes for rigid
interface fracture in DCBs, the total ERR G in Eq. (1) can be parti-
tioned as
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where cI and cII are two constants, and (hi-2D,bi-2D) and ðh0i�2D;b
0
i�2DÞ

with i = 1, 2 represent the first and second sets orthogonal pure
modes respectively. The subscript 2D denotes that the pure modes
are based on 2D elasticity theory. For example, when M2B = h1-2DM1B

and N1Be = 0, the pure mode I mode occurs as the relative shearing
displacement just behind the crack tip is zero. This pure mode I is
denoted by h1-2D. Its orthogonal pure mode II is b1-2D which corre-
sponds to zero crack tip opening force. Here, the ‘orthogonal’ means

1 h1�2D 0f g½C� 1 b1�2D 0f gT ¼ 0 ð4Þ

For simplicity, Eq. (4) can be written as h1-2D = orthogonal(b1-2D).
Similarly, when M2B ¼ h01�2DM1B and N1Be = 0, the pure mode I mode
occurs as the crack tip shearing force is zero. This pure mode I is
denoted by h01�2D. Its orthogonal pure mode II is b01�2D which corre-
sponds to zero crack tip opening displacement.

The work in Refs. [2–4,6] has shown that in Euler beam theory
with rigid interfaces, the two sets of orthogonal pure modes do not
coincide and that this results in ‘stealthy’ interactions which
change the ERR partitions GI and GII but do not change the total
ERR G. The work in Refs. [2–6] also shows that in Timoshenko
beam theory with either rigid or non-rigid interfaces, these two
sets of modes coincide on the first set of pure modes from Euler
beam theory resulting in no stealthy interaction. Furthermore,
Ref. [1] shows that the two sets also coincide in 2D elasticity theory
for rigid interfaces, i.e. ðhi�2D; bi�2DÞ ¼ ðh0i�2D; b

0
i�2DÞ with i = 1, 2.

Therefore, Eqs (2) and (3) become here for laminated unidirec-
tional composite DCBs with rigid interfaces in 2D elasticity,
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where

cI ¼ Gh1�2D 1� h1�2D

b1�2D

� ��2

; cII ¼ Gb1�2D
1� b1�2D

h1�2D

� ��2

ð7Þ

Gh1�2D ¼
1

2bE
1
I1
þ h2

1�2D

I2
� ð1þ h1�2DÞ2

I

 !
;

Gb1�2D
¼ 1

2bE
1
I1
þ b2

1�2D

I2
� ð1þ b1�2DÞ

2

I

 !
ð8Þ

Now, the key task is to determine the orthogonal pure mode set
(hi-2D,bi-2D) with i = 1, 2. At this point, it is important to note that
the orthogonal property demonstrated in Eq. (4) exists between
any pair of pure modes in the pure mode set (hi-2D,bi-2D) with
i = 1, 2. That is, h1-2D = orthogonal(b1-2D and b2-2D) and
h2-2D = orthogonal(b1-2D and b2-2D). As long as one pure mode is
known, say h1-2D, the others can be obtained by using the orthogo-
nal property. This knowledge provides a powerful methodology to
find all the pure modes and to partition mixed modes, which will
be used in the following development. It is seen now that the cen-
tral task of the present work is to determine h1-2D. In what follows,
a novel method is developed for this task.

Nomenclature

a crack length in a DCB
A1, A2, A cross section areas of upper, lower and intact beams
b width of a DCB
ch, cb 2D elasticity correction factors for h mode I and b mode

II
E Young’s modulus
G, GI, GII total, mode I and II ERRs
Gh, Gb h mode I and b mode II ERRs
h1, h2, h thicknesses of upper, lower and intact beams
I1, I2, I second moments of upper, lower and intact beams
L length of a DCB
M1, M2 DCB tip bending moments on upper and lower beams
M1B, M2B crack tip bending moments on upper and lower beams
N1, N2 DCB tip axial forces on upper and lower beams
N1B, N2B crack tip axial forces on upper and lower beams

N1Be crack tip effective axial force on upper beam
c thickness ratio
(h, b) zero shearing displacement, zero opening force orthog-

onal pure modes pair
(h0, b0) zero shearing force, zero opening displacement orthog-

onal pure modes pair
m Poisson’s ratio
rn, ss interface normal and shear stresses
Da crack influence length in a DCB

Abbreviations
DCB double cantilever beam
ERR energy release rate

(a)

(b)

Fig. 1. A laminated unidirectional composite DCB. (a) General description. (b)
Details of the Da-length crack influence region.
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