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a b s t r a c t

Thermo-electro-mechanical vibration of piezoelectric cylindrical nanoshells is studied using the nonlocal
theory and Love’s thin shell theory. The governing equations and boundary conditions are derived using
Hamilton’s principle. An analytical solution is first given for the simply supported piezoelectric nanoshell
by representing displacement components in the double Fourier series. Then, the differential quadrature
(DQ) method is employed to obtain numerical solutions of piezoelectric nanoshells under various
boundary conditions. The influence of the nonlocal parameter, temperature rise, external electric voltage,
radius-to-thickness ratio and length-to-radius ratio on natural frequencies of piezoelectric nanoshells are
discussed in detail. It is found that the nonlocal effect and thermoelectric loading have a significant effect
on natural frequencies of piezoelectric nanoshells.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the pioneering work by Wang and his co-authors [1],
piezoelectric nanomaterials (e.g. ZnO, ZnS, PZT, GaN, BaTiO3, etc.)
and their nanostructures (e.g. nanowires, nanobelts, nanorings,
nanohelices, nanosprings, etc.) have received the attention of many
researchers. Extensive technical literature on the subject can be
found in the review article by Fang et al. [2]. Piezoelectric nano-
structures have been regarded as the next-generation piezoelectric
materials because of their inherent nanosized piezoelectricity.
They exhibit an enhanced piezoelectric effect, novel electrical,
mechanical, physical, and chemical properties, and the coupling
between piezoelectric and semiconducting properties [2]. These
distinct features make them suitable for potential applications
in many nanodevices, such as nanoresonators [3], field effect
transistors [4], light emitting diodes [5], chemical sensors [6],
and nanogenerators [7].

Piezoelectric nanostructures have the dimension varying from
several hundred nanometers to just a few nanometers. On this
scale, the size effects become very important. The size-dependent
material properties of piezoelectric nanostructures have been
observed in both experiments and atomistic simulations [8–10].
Therefore, the size effect should be taken into account in theoreti-
cal and experimental studies of piezoelectric nanostructures. It

should be pointed out that Eringen’ nonlocal theory [11–13] has
been widely accepted and applied to analyze the size effect on
nanostructures. Based on this theory, the bending [14,15], buckling
[14–17], linear vibration [14,15,18,19], nonlinear vibration
[20–22], postbuckling [23,24] and wave propagation [25–27]
problems of carbon nanotubes, graphene sheets, mass sensors,
nanowires, and so on, have been extensively studied using the
nonlocal nanobeam model, nonlocal nanoplate model, and
nonlocal nanoshell model. For more details, refer to the review
articles by Wang and Li [28] and Arash and Wang [29].

The investigations cited above were mainly concerned with the
nonlocal effect on elastic nanostructures, such as carbon nanotubes
and graphene sheets. Recently, Ke and Wang [30] and Ke et al. [31]
extended the nonlocal theory to piezoelectric nanostructures. They
analyzed the thermo-electro -mechanical linear and nonlinear
vibration of piezoelectric nanobeams based on the nonlocal Timo-
shenko beam theory. Further, Liu et al. [32] studied the vibration of
piezoelectric nanoplates based on the nonlocal Kirchhoff plate the-
ory. The nanoplate was subjected to a biaxial force, an applied volt-
age and a uniform temperature rise. Wang et al. [33] examined the
influences of both surface and small scale effects on the bending
behavior of a piezoelectric nanowire by using the beam model, sur-
face elasticity theory and nonlocal theory. Also, Hosseini-Hashemi
et al. [34] studied free vibration of functionally graded piezoelec-
tric nanobeams by considering the surface effect (including surface
elasticity, surface stress, and surface density) as well as the
nonlocal effect. In particular, Arani and his co-workers presented
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comprehensive investigations on the size-dependent behavior of
Boron Nitride nanotubes (BNNTs) using the nonlocal piezoelectric
Timoshenko beam theory [35,36] and shell theory [37,38]. Studies
based on the nonlocal theory might be helpful for understanding
the size-dependent electromechanical properties of piezoelectric
nanowires, nanofilms, and nanoshells, and they are important for
the design of piezoelectric nanodevices.

In this paper, we present a thermo-electro-mechanical vibration
of piezoelectric cylindrical nanoshells based on the nonlocal theory
and Love’s thin shell theory. The nonlocal nanoshell model is
developed to capture the size effect in piezoelectric nanostruc-
tures. Hamilton’s principle is employed to derive the governing
equations and boundary conditions. An analytical solution is first
given for the simply supported piezoelectric nanoshell by using
Navier’s solution method. Then, the differential quadrature (DQ)
method is used to obtain numerical solutions for vibration of
piezoelectric nanoshells with different types of end supports. A
detailed parametric study is conducted to highlight the influences
of the nonlocal parameter, temperature rise, external electric
voltage, radius-to-thickness ratio, and length-to-radius ratio on
natural frequencies of piezoelectric nanoshells.

The novelty of this paper is threefold: (1) a piezoelectric nano-
shell model is developed to incorporate the effects of the nonlocal
parameter, temperature rise, and external electric voltage; (2) the
electric potential of the piezoelectric nanoshell is assumed as a
combination of a cosine and linear variation; and (3) both analyt-
ical and numerical results are presented for the vibration of piezo-
electric nanoshells.

2. Nonlocal theory for piezoelectric materials

In the Eringen’s nonlocal elasticity theory [11–15], the stress at
a reference point in a body depends not only on the strain at that
point but also on all points of the body. In the nonlocal piezoelec-
tric theory, the stress and electric displacement at a reference point
depends not only on the strain and electric field at that point but
also at all other points of the body. Mathematically, the basic equa-
tions for a homogeneous and nonlocal piezoelectric solid with zero
body force can be written as [30,31,39,40]

rij ¼
Z

V
aðjx0 � xj; sÞ Cijkleklðx0Þ � ekijEkðx0Þ � kijDT

� �
dx0; ð1Þ

Di ¼
Z

V
a x0 � xj j; sð Þ eikleklðx0Þ þ 2ikEkðx0Þ þ piDT½ �dx0; ð2Þ

rij;j ¼ q€ui; Di;i ¼ 0; ð3Þ

eij ¼
1
2
ðui;j þ uj;iÞ; Ei ¼ �~U;i ð4Þ

where i, j,k, l = 1,2,3; rij, eij, Di, Ei and ui are the stress, strain, electric
displacement, electric field and displacement components, respec-
tively; Cijkl, ekij, 2ik, kij, pi and q are the components of the elasticity
tensor, piezoelectric tensor, dielectric tensor, thermal modulus ten-
sor, and pyroelectric vector, mass density, respectively; DT is the
temperature rise; ~U is the electric potential; a(j x0 � xj,s) is the non-
local attenuation function; jx0 � xj is the Euclidean distance; s = e0a/l
is the scale parameter, where e0 is a material constant which is
determined experimentally or approximated by matching the dis-
persion curves of the plane waves with those of the atomic lattice
dynamics; and a and l are the internal and external characteristic
lengths of the nanostructures, respectively.

According to Eringen [12], it is possible to represent the integral
constitutive relations (1) and (2) in an equivalent differential form
as

rij � ðe0aÞ2r2rij ¼ Cijklekl � ekijEk � kijDT; ð5Þ
Di � ðe0aÞ2r2Di ¼ eiklekl þ 2ikEk þ piDT; ð6Þ

wherer2 is the Laplace operator; e0a is the scale coefficient reveal-
ing the size effect on the response of nanostructures. In Eqs. (1)–(6)
comma followed by a subscript (k) denotes differentiation with
respect to xk.

3. Nonlocal piezoelectric cylindrical nanoshell model

Consider a piezoelectric cylindrical nanoshell with the length L,
radius R, and thickness h, and subjected to an applied electric volt-
age ~Uðx; h; z; tÞ and a uniform temperature rise DT, as shown in
Fig. 1; here (x,h,z) denotes the orthogonal coordinate system fixed
at the midplane of the nanoshell. The piezoelectric nanoshell is
polarized along the thickness direction only.

Based on the Kirchhoff–Love hypothesis, the displacements of
an arbitrary point in the shell along the x-, h- and z-axes, denoted
by ux(x,h,z,t), uh(x,h,z,t) and uz(x,h,z,t), respectively, are [41,42]

uxðx; h; z; tÞ ¼ Uðx; h; tÞ � z
@Wðx; h; tÞ

@x
; ð7Þ

uhðx; h; z; tÞ ¼ Vðx; h; tÞ � z
@Wðx; h; tÞ

@h
; ð8Þ

uzðx; h; z; tÞ ¼Wðx; h; tÞ; ð9Þ

where U(x,h,t), V(x,h,t) and W(x,h,t) are the displacements in the
midplane; and t is the time.

Following Wang [43], the electric potential is assumed to vary
as a combination of a cosine and linear variation, which satisfies
the Maxwell equation. It can be written as

~Uðx; h; z; tÞ ¼ � cosðbzÞUðx; h; tÞ þ 2z/0

h
; ð10Þ

where b = p/h; U(x,h,t) is the spatial and time variation of the elec-
tric potential in the x- and h- directions; and /0 is the initial applied
external electric voltage.

Using Love’s first approximation shell theory, the strain compo-
nents are computed as

ex ¼
@U
@x
� z

@2W
@x2 ; ð11Þ

eh ¼
1
R

@V
@h
þW

� �
� z

R2

@2W

@h2 �
@V
@h

 !
; ð12Þ

cxh ¼
@V
@x
þ 1

R
@U
@h
� z

R
2@2W
@x@h

� @V
@x

 !
: ð13Þ

According to the assumed electric potential in Eq. (10), the electric
field components can be expressed as [44,45]

Ex ¼ �
@ ~U
@x
¼ cosðbzÞ @U

@x
; ð14Þ

Eh ¼ �
1

Rþ z
@ ~U
@h
¼ cosðbzÞ

Rþ z
@U
@h

; ð15Þ

Ez ¼ �
@ ~U
@z
¼ �b sinðbzÞU� 2/0

h
: ð16Þ

Fig. 1. Schematic configuration of a piezoelectric cylindrical nanoshell.
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