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a b s t r a c t

The multiscale asymptotic expansion method (MsAEM) up to any expansion order is formulated in a
matrix form which is convenient for use as standard finite element method (FEM). Physical interpretations
of the influence functions of different order are presented by analyzing the properties of self-balanced
quasi load vectors used for solving the influence functions. The physical interpretation of MsAEM will
lay the foundation for its applications. Numerical results validate the mathematical formulations and
show that the second perturbation is necessary for micro analysis of periodical composite structures.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that iso-strain or iso-stress model [1] and other
homogenized approaches [2] can be used to obtain the macro solu-
tions like the lower order frequencies for many composites to the
satisfactory accuracy. Compared with the macro analysis, the micro
analysis as the strength analysis is very expensive. For balancing
accuracy and efficiency, several multiscale methods have been
motivated, such as the mathematical homogenization method
(MHM) [3,4], the generalized finite element method (GFEM) [5,6],
the multiscale finite element (MsFEM) [7,8], the heterogeneous
multiscale method (HMM) [9,10] and the multiscale eigenelement
method (MEM) [11,12], among of which MHM is representative
and has been elaborated in many Refs. [13–21, for examples]. As
a representative of MHM, the multiscale asymptotic expansion
method (MsAEM, it is also called asymptotic homogenization
method) is a powerful technique for the study of heterogeneous
media and has been used for solving different kinds of physical
problems. But no other paper investigated the physical interpreta-
tion of MsAEM except the author’s work [11] which discussed the
physical implication of the first order perturbation of MsAEM. It is
believed that a deep understanding of the physical foundation is
of significance for the practical application of MsAEM.

In this context, a compact matrix form of MsAEM is given first,
and then a unit cell with multi inclusions of a two-dimensional (2D)
periodical composite structure and a periodical composite rod are
taken into account to interpret MsAEM in a physical sense. It is note-
worthy that, for a unit cell of one-dimensional (1D) periodical com-
posite rod, MsAEM can be interpreted explicitly and analytically.
That is why such simple model is involved in the third section.

The outline of present paper is as follows: The matrix form of
MsAEM is presented in Section 2, and the physical interpretations
of influence functions for different order expansion are investi-
gated in Section 3. Then numerical experiments are conducted in
Section 4. Finally, conclusions are drawn in Section 5.

2. Asymptotic homogenization method in a matrix form

Based on the assumptions of microstructure periodicity and
uniformity of a unit cell domain, the homogenization theory
decomposes the heterogeneous boundary value problem into the
unit cell (micro) problem and the global (macro) problem. A 2D
periodical composite problem is taken into account below to show
the matrix form of MsAEM which is convenient for its use.

The governing equation for 2D composite problem is elliptic for
most cases with multiscale or rough coefficients as
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where Ee
ijmn is the fourth order elastic tensor, the indices

i; j;m; n ¼ 1;2, the small parameter e indicates the proportion
between the dimensions of a unit cell and the entire domain.
Although MHM was formulated and used by many researchers
[3–4,13–21], its physical interpretation was rarely touched except
a paper [11] of present authors.

The actual displacement ue
m in asymptotic expansion form is a

function of macro and micro scales as

ue
mðxÞ ¼ u0
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where the homogenized displacement u0
m is offered by the homog-

enized model, and the perturbed displacement uj
mðx; yÞ of both

scales is periodic in y; e is the ratio of the dimensions of a unit cell
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and the entire domain, i.e., e is given if the sizes of unit cell and
entire domain are given.

The perturbed displacements in separation of variables form or
uncoupled form and the different order of governing equations for
influence functions are listed in Table 1. The influence functions
periodical in y depend only on the scale y while the homogenized
displacement and its derivatives of different orders only on the
scale x. In Table 1, the operators ryj

� and ryj
in governing equa-

tions denote the operation of divergence and gradient in the coor-
dinate frame y, respectively. We had many observations from the
governing equations of influence functions and expressions of per-
turbed displacements in uncoupled form in Table 1 [22], one of
them is reviewed below for better understanding of present work.

The right side term ryj
� Ee

ijmn in governing equation for the first
order influence functions is linear distributed quasi-load which is
self-balanced and formed only by the material constants, the load
is non-zero along boundary and interface of matrix and inclusion;
the right side term for the second order influence functions is self-
balanced surface quasi-load, the component Ee

ipkl � EH
ipkl (EH is the

homogenized elastic constant) of which depends on material con-
stants only; but the right side terms for solving the third or higher
order influence functions have not the components formed only
by material constants. Therefore it follows that the first and second
order perturbations are necessary, and the neglect of the second
order perturbation may cause unacceptable error, that means we
have to take the second order perturbation term into account in
the use of MsAEM.

The application of MsAEM involves three steps: the first is to
solve unit cell problem to obtain influence functions and homoge-
nized elastic constant EH, then to solve the macro or global prob-
lem to obtain u0 and its derivatives, finally to calculate the micro
actual displacements and stresses etc.

The unit cell problem is governed by equations in the third col-
umn of Table 1. The discretization of these equations gives their
matrix form as

Kevr ¼ Fr ð3Þ

where r = 1, 2, . . . , is the expansion order, the micro stiffness matrix
Ke, the influence function vector vr and the self-balanced quasi load
matrix Fr have the following forms
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and s P 3, the integer e is the sub-element number of unit cell
model, De denotes the domain of sub-element e in unit cell model,
the elastic constant matrices used in Eqs. (4) and (6) are given in
Appendix A. The dimensions of geometrical matrix B, influence
matrix v and shape function matrix N depend on the element order
used in FEM. For a bilinear rectangular sub-element in unit cell
model, N is 2 by 8 and has the form as

N ¼
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4


 �
ð8Þ

Then B is 3 by 8, ve
1 is 8 by 3, ve

2 is 8 by 6 and ve
3 is 8 by 12. And B has

the same form as that in standard FEM, Ni (i = 1,2,3,4) in Eq. (8) are
the node shape functions of a sub-element.

In Table 1, the first order influence function is denoted by vkl
1m

(here superscript e is neglected, r = 1).The superscripts k and l (k,
l = 1,2) have three different combinations as kl = [11(k = 1, l = 1),
22(k = 2, l = 2), 12(k = 1, l = 2, or k = 2, l = 1)], these three
combinations correspond to the three columns of v1 in order.
Similarly, the six combinations [111,221,121,112,222,122] of klp
correspond to the six columns of v2 in order, and the twelve
combinations [1111,2211,1211,1121,2221,1221,1112,2212,1212,
1122,2222,1222] of klpq to the twelve columns of v3 in order.

For macro problem, we have
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where D �X represents the domain of a unit cell for a specified
periodic composite problem, the integer g is the number of a macro
element, generally one takes a unit cell as a macro element.

After solving macro displacements and their derivatives as well
as the influence functions, the actual displacements can be given in
a matrix form as

ue ¼ u0 � ev1
@u0

@x
� e2v2

@2u0

@x2 � e3v3
@3u0

@x3 þ � � � ð11Þ

where the forms of ou0/ox, o2u0/ox2 and o3u0/ox3 can be readily
determined by using the forms of v1, v2 and v3 in conjunction with
the combinations of kl, klp and klpq as given above.

It can be seen from above formulae that all equations in uncou-
pled MsAEM can be solved by means of the finite element method,
and a salient feature of MsAEM is that the fine scale solution is
completely described on the coarse scale, see Eq. (11), that means
the accuracy of the actual solutions depends on the macro dis-
placements u0 and their derivatives ou0/ox, o2u0/ox2 and o3u0/ox3

once the influence functions are solved over a representative vol-
ume cell.

Table 1
Perturbed displacements and governing equations for influence functions.

Order Perturbed displacements Governing equations for influence functions
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