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a b s t r a c t

In this paper, a nonlinear continuum model is developed for the large amplitude vibration of nanoelec-
tromechanical resonators using piezoelectric nanofilms (PNFs) under external electric voltage. Hamilton’s
principle in conjunction with von Karman’s theory is employed to derive the differential equations of
motion. Size effects are incorporated into both the governing equations and in-plane boundary conditions
using nonlocal continuum mechanics. Explicit expressions are presented for the nonlinear natural
frequencies and critical electric voltages of PNFs. In comparison to the available experimental data and
molecular dynamics simulation results, the present nonlocal model with reasonable small scale param-
eters results in more accurate estimation of natural frequencies than the classical theory of plates. It is
anticipated that the results of the present work would be helpful in experimental characterization of
the mechanical properties of piezoelectric nanoresonators.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, nanoresonators have attracted a great deal of atten-
tion from research communities because of their promising appli-
cations in nanoelectromechanical systems (NEMS) [1–5]. They can
be applied in the detection of amyloid growth [6], quantum ground
state [7] and spin manipulation [8]. More details about the nanore-
sonator-based detections and their nanomechanics principles can
be found in the review paper of Eom et al. [3]. The nanoelectrome-
chanical resonators can also be used for the measurement of mass,
density and volume during the cell cycle of yeast [9]. Another
potential application of these nanodevices is the attonewton-scale
force resolution [10]. In the operation of NEMS devices, the actua-
tion and detection of nanometer motion at high frequencies is one
of the most important challenges. Ekinci [1] reviewed the electro-
mechanical transducers at nanoscales and available techniques to
actuate and detect NEMS motion. Further, it has been shown that
very high frequency NEMS resonators provide unprecedented sen-
sitivity in measuring molecular weight [11]. Recently, it has been
reported that nanoresonators such as suspended microchannel
resonators (SMRs) and optical microring resonators (MRRs) have
potential application in the next-generation mechanical biosensors

[4]. The ability of a resonator to detect a physical quantity depends
on its resonant frequency. For example, the ability of the resonator
to sense small molecules increases with increasing the resonant
frequency [12]. The identification of small molecules would be
useful in the early and efficient diagnosis of diseases such as cancer
[13].

Piezoelectric nanostructures such as GaN nanowires [14] and
aluminum nitride (AlN) thin films [15] can be used as building
blocks for nanoresonators. Sinha et al. [16] showed that the supe-
rior material properties of ultrathin AlN piezoelectric films make
them ideal candidates for the fabrication of nanoelectromechanical
switches. In addition, Briscoe et al. [17] presented measurement
techniques for electromechanical energy harvesting at small scale
using piezoelectric nanostructures. For more information about
the possible applications of piezoelectric nanostructures in nano-
technology, we refer readers to the review paper of Fang et al.
[18]. Due to these promising applications, the increasing level of
knowledge of the mechanical characteristics of piezoelectric
nanostructures is vital for the proper design and fabrication of
smart nanodevices.

During the past decade, different higher-order theories have
been used to study the bending, vibration and buckling of
micro/nano-structural elements such as carbon nanotubes [19],
nanorings [20], microtubules [21] and graphene sheets [22]. Demir
et al. [19] studied the vibration characteristics of carbon nanotubes
based on shear deformable beam theory and discrete singular
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convolution technique. Civalek and Akgoz [21] investigated the
free vibration analysis of microtubules using nonlocal Euler–Ber-
noulli beam theory. A review of literature shows that, compared
to the carbon nanotubes and graphene sheets, few research works
have been carried out on the theoretical investigation of piezoelec-
tric nanostructures, especially on the nonlinear vibration proper-
ties. The influences of residual surface stress, surface elasticity
and surface piezoelectricity on the vibration and buckling of piezo-
electric nanobeams were studied based on the Euler–Bernoulli
beam theory [23]. Yan and Jiang [24] developed a theoretical
model incorporating the effects of surface energy to predict the
electromechanical response of a curved piezoelectric nanobeam.
They also examined the electroelastic response of piezoelectric
nanofilms under electromechanical loads with the consideration
of surface effects [25]. Based on the nonlocal continuum mechan-
ics, modified linear and nonlinear beam models were developed
to study the small scale effects on the small [26] and large ampli-
tude [27] vibrations of piezoelectric nanobeams, respectively. Fur-
thermore, Liu et al. [28] determined the linear natural frequencies
of piezoelectric nanoplates under thermo-electro-mechanical load-
ing with the use of the nonlocal elasticity theory. More recently,
the influence of voltage distribution on the nonlocal linear free
vibration of coupled piezoelectric-nanoplate-systems embedded
in Pasternak elastic medium has been studied [29].

Generally, the amplitude of vibration and static deflection of a
nanostructure may be larger than the order of its thickness. In such
cases, the linear continuum models are uncertain in order to accu-
rately obtain the natural frequencies and critical buckling loads.
Recently, Farajpour et al. [30] have examined the postbuckling of
multi-layered graphene sheets (MLGS) under non-uniform biaxial
compression including nonlinear van der Waals interactions.
Nazemnezhad and Hosseini-Hashemi [31] developed a nonlocal
nonlinear beam model for the free vibration of functionally graded
nanobeams. Furthermore, Golmakani and Rezatalab [32] investi-
gated the nonlinear bending of orthotropic nanoplates embedded
in an elastic medium using nonlocal continuum mechanics. How-
ever, to the authors’ best knowledge, up to now, the nonlinear
vibration of NEMS resonators using piezoelectric nanofilms (PNFs)
under external electric voltage has not been studied in the litera-
ture. This motivates us to investigate this problem here. The small
scale effects are incorporated into the governing equations and in-
plane boundary conditions by applying the nonlocal continuum
mechanics to the classical plate theory. Three coupled nonlinear
differential equations are derived for transverse vibrations using
von Karman nonlinear model and Hamilton’s principle. Analytical
solutions are obtained for the nonlinear natural frequencies and
critical electric voltages of PNFs with simply supported boundary
conditions. The present results are compared with the available
experimental data and atomistic simulation results and an excel-
lent agreement is found. It is shown that the natural frequencies
of piezoelectric nanoresonators can be tuned by adjusting the
value of external electric voltage.

2. Nonlocal nonlinear plate model for PNFs

In this section, we develop a nonlocal nonlinear plate model for
the large amplitude vibration of piezoelectric NEMS resonators.
Fig. 1 shows a nanoelectromechanical resonator consists of a rect-
angular PNF with uniform thickness subjected to an external elec-
tric voltage. A Cartesian coordinate frame is employed to label the
material points of the system. The x, y and z axes of the coordinate
frame are assumed along the length (‘x), width (‘y) and thickness
(h) of the nanofilm, respectively.

The size dependence of mechanical behavior has been observed
in nanosized structural elements such as carbon nanotubes [33,34],
nanorods [35,36], microtubules [37], nanoparticles [38] and

nanoplates [39–41]. Nonlocal continuum models take into account
the long-range interatomic interactions and thus yield size-
dependent results [42]. This theory is based on a simple physical
concept that the components of stress tensor at a given point are
a function not only of strain tensor at that point but also are a func-
tion of strain tensors at all other points in the domain. The results
of molecular dynamics simulations and experimental data on pho-
non dispersion demonstrated that the nonlocal continuum models
are reasonable to obtain the mechanical characteristics of nano-
structures [30,39,42]. Based on the nonlocal continuum mechanics,
the stress–strain relations for Hookean piezoelectric solids
neglecting the body force can be expressed as

rij ¼
Z Z Z

V

Hðjx0 � xj;vÞ½cijkleklðx0Þ � ekijEkðx0Þ�dx0 ð1Þ

Di ¼
Z Z Z

V

Hðjx0 � xj;vÞ½eikleklðx0Þ þ jkijEkðx0Þ�dx0 ð2Þ

rij;j ¼ q€ui; Di;j ¼ 0; Ei ¼ �U;i ð3a-cÞ

where rij and Di are the nonlocal stress and electric displacement,
respectively; eij, Ei and Ui are the components of strain tensor,
electric field vector and displacement vector, respectively; U
represents the electric potential; Also, the terms cijkl, ekij, jkij and
q are respectively the fourth order elasticity tensor, piezoelectric
constants, dielectric constants and mass density of the PNF. The
term H(jx0 � xj,v) is the nonlocal modulus in which jx � x0j is the
distance between points x and x0 and v = e0‘i/‘e is the small scale
coefficient. ‘i and ‘e are the internal and external characteristic
lengths, respectively. Choice of the value of parameter e0 is crucial
for the validity of nonlocal models. This parameter can be obtained
by matching the dispersion curves of plane waves with those of
atomic lattice dynamics [42]. In other words, results can be justified
by an approximation of the atomic dispersion relations. Due to the
mathematical difficulties associated with using Eqs. (1) and (2) in
the formulation of nanosized structural elements, the following
stress–strain relations are often used [26–37]

rij � ðe0‘iÞ2r2rij ¼ cijklekl � ekijEk;

Di � ðe0‘iÞ2r2Di ¼ eiklekl þ jkijEk ð4a;bÞ

where e0‘i is the nonlocal parameter which contains the small
scale effects. r2 is the Laplacian operator and is given by
r2(⁄) = @2(⁄)/@ x2 + @2(⁄)/@y2. Using the above relation, the nonlocal

Fig. 1. Schematic representation of a piezoelectric nanoelectromechanical
resonator.
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