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a b s t r a c t

An alternative model for multilayered beams undergoing axial, shear and bending loads applied at the
beam’s ends is developed. It is based on a layer-wise kinematics, which inherently fulfills the equilibrium
equations at layer level and the interface continuity conditions. This kinematics is suitably expressed by
introducing a set of generalized variables representative of the beam midline displacement field, which
become the primary variables of the problem governing equations. As a consequence, the proposed beam
model exhibits the computational characteristics of an equivalent single layer model and possesses the
accuracy of layer-wise beam theories, as well. Closed form solutions for different beam support and load
conditions are given. Validation results are presented for composite laminates and functionally graded
beams are investigated to show the potentiality of the presented beam theory.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The proper modeling of composite multilayered configurations
is crucial in composite structures design, because of the need for
an accurate appraisal of their structural behavior responsible of
complex damage and failure mechanisms. It is understood that
3-D analytical or numerical solutions represent the best choice in
terms of solution accuracy. Examples are given, among others, by
the works of Pagano [1–3], where the exact solutions for the
bending problem of simply supported composite laminates under
distributed normal surface forces are presented. A review on such
topic is given by Bogdanovich and Yushanov, who also presented
results obtained by a 3-D displacement-assumed variational
analysis based on Bernstein polynomials [4]. However, exact 3-D
solution are generally difficult to obtain and they usually refer to
simple specific geometric and/or load and support configurations
[5]. These drawbacks can be overcome by 3-D numerical
approaches, such as finite elements [6–8] or boundary elements
[9–11] whose application generally involves meaningful computa-
tional costs. Thus, the use of 1-D beam or 2-D plate formulations
allows to reduce the computational costs while ensuring an appro-
priate level of accuracy [12] and, for such reason, they are widely
employed particularly during the design phase.

1-D or 2-D laminated structures modeling approaches can be
classified into layer-wise (LW) and equivalent single layer (ESL)

theories [13–15]. The LW approach assumes through-the-
thickness approximation of the displacements at layer level and
consequently the displacement and stress continuity at interfaces
needs to be explicitly enforced to recover the model of the
laminate as a whole. On the other hand, in the classical ESL
theories the kinematical model is assumed unique for the whole
laminate, generally in the form of a through-the-thickness expan-
sion of continuous functions. According with these modeling
assumptions, LW theories result more accurate than the ESL ones
in predicting the mechanical fields for moderately to very thick
laminates. However, LW theories exhibit an increasing modeling
cost as the number of laminate plies increases, since the number
of involved degrees of freedom is strictly related to the number
of layers. On the contrary, the computational effort associated with
ESL models is independent on the number of layers although the
accuracy loss as the laminate thickness increases. In addition, since
the classical ESL approaches are characterized by a unique
displacement assumption for the whole laminate, the through-
the-thickness strain distributions result continuous crossing the
interfaces and this implies that they are not capable of ensuring
the equilibrium conditions at interfaces and thus are not able to
proper model the interlaminar stress component distribution. Dif-
ferent approaches have been proposed in literature to improve
basic ESL models. Some of these are the so called refined high order
deformation theories that employ Taylor, trigonometric or expo-
nential expansion, or even combination of them, to approximate
the trough-the-thickness displacement distributions and improve
the accuracy for moderately thick and thick laminate [12,16]. How-
ever, these kind of refined higher order shear deformation theories,
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as well as CLT and FSDT models, are not capable of fulfilling the so
called C0

z requirements, which call for discontinuous strain and
continuous transverse stress components crossing the layers’
interface [5]. To cope with these requirements allowing at the
same time to preserve the effectiveness of the ESL models, the
so-called zig-zag theories have been proposed in the literature
[17–19]. In these theories, a LW discontinuous function is a priori
selected to enrich the kinematical model in such a way that the
interface conditions, in terms of continuity of displacements and
equilibrium of tractions, are met [20].

The present paper collocates in the framework of refined 1-D
theories for multilayered composite beams. As far as a lot of works
have been carried out on LW and ESL theories for 1-D multilayered
structures, a comprehensive review of the proposed beam theories
is out of the scope of the present paper and the interested reader is
referred to Ref. [16] for the state of the art on the subject. Here, a
new approach for the analysis of multilayered beam-type lami-
nates undergoing end loads is proposed. It is based on a layer-wise
kinematics, which is explicitly derived so as to fulfil the point-wise
equilibrium balance equations as well as the traction-free condi-
tions at the laminate top and bottom surfaces. In turn, generalized
kinematical variables are introduced and the interface continuity
conditions are suitably employed allowing for a reduction of the
degrees of freedom to those needed for a single layer beam. As a
consequence, the obtained model for multilayered beam presents
the effectiveness of the ESL approaches preserving the accuracy
of the LW models. It is also worth noting that in the proposed
model the interlaminar stress continuity conditions are inherently
fulfilled without the use of additionally independent stress/strain
approximation functions. The solution for different beam configu-
rations is presented and the model validated with results obtained
by finite elements analyses. Finally, to evidence the outperforming
computational characteristics of the proposed beam theory, func-
tionally graded beam are analyzed by employing a discrete layer
approach.

2. Basic relationships and assumptions

Let us consider a linearly elastic multilayered beam consisting
of n orthotropic plies. The beam has length L and rectangular cross
section of height h and unitary width. The top and bottom surfaces
of the beam are traction free whereas generalized stress resultants
are applied on the end sections. A global reference system fx; zg is
introduced with the origin centered at the left end of the beam
midline and the x-axis coincident with the beam midline. The kth
layer of thickness hk is also referred to a local coordinate system
denoted by fx; zkg, which is centered at the kth layer midline, see
Fig. 1. The distance �hk of the kth layer midline from the beam
midline is given by

�hk ¼
h� hk

2
�
Xk�1

i¼1

hi ð1Þ

According to f3;2g-order kinematic description [21], the dis-
placement field inside each layer is assumed as

uhki x; zkð Þ ¼ uhki0 xð Þ þ zkh
hki xð Þ þ z2

k Bhki xð Þ þ z3
kChki xð Þ ð2aÞ

whki x; zkð Þ ¼ whki0 xð Þ þ zkAhki xð Þ þ z2
kDhki xð Þ ð2bÞ

where uhki0 and whki0 are the axial and transverse displacement com-
ponents of the layer midline, hhki is the layer cross-sectional rotation
whereas Ahki; Bhki; Chki, and Dhki are unknown functions of x to be
determined. The superscript hki is used to denote quantities associ-
ated with the k-th layer of the beam, whereas symbols not affected
by this notation refer to the plate as a whole.

Assuming linear strain–displacement relationships, the strains
components for the assumed kinematical model read as

ehkixx ¼
duhki0

dx
þ zk

dhhki

dx
þ z2

k
dBhki

dx
þ z3

k
dChki

dx
ð3aÞ

ehkizz ¼
dAhki

dx
þ 2zk

dDhki

dx
ð3bÞ

chkixz ¼ hhki þ dwhki0

dx
þ zk

dAhki

dx
þ 2Bhki

 !
þ z2

k
dDhki

dx
þ 3Chki

 !
ð3cÞ

The in-plane and transverse normal stresses rxx and rzz and the
shear stress szx are evaluated at the ply level using constitutive
relationships, which write as

rhkixx ¼ Q hkixx ehkixx þ Q hkixz ehkizz ð4aÞ

rzz ¼ Q hkizx ehkixx þ Q hkizz ehkizz ð4bÞ

shkixz ¼ Ghkixz cxz ð4cÞ

where Q hkiij are the layer stiffness coefficients and Ghkixz is the shear
modulus.

By substituting Eq. (4) along with Eq. (3) into the stress equilib-
rium equations, the following set of equations is inferred

Q hkixx
d2uhki0

dx2 þ Q hkixz þ Ghkixz

� � dAhki

dx
þ 2Ghkixz Bhki ¼ 0 ð5aÞ

Q hkixx
d2hhki

dx2 þ 6Ghkixz Chki þ 2 Q hkixz þ Ghkixz

� � dDhki

dx
¼ 0 ð5bÞ

Q hkixz þ Ghkixz

� � dhhki

dx
þ Ghkixz

d2whki0

dx2 þ 2Q hkizz Dhki ¼ 0 ð5cÞ

Ghkixz
d2Ahki

dx2 þ 2 Q hkixz þ Ghkixz

� � dBhki

dx
¼ 0 ð5dÞ

3 Q hkixz þ Ghkixz

� � dChki

dx
þ Ghkixz

d2Dhki

dx2 ¼ 0 ð5eÞ

d2Bhki

dx2 ¼
d2Chki

dx2 ¼ 0 ð5fÞ

The previous equations hold for each kth single layer of the
laminate. To ensure laminate interface continuity, they have to be
supplemented by the compatibility of displacements andFig. 1. Laminate geometrical scheme.
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