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a b s t r a c t

Based on the extended high order sandwich panel theory (EHSAPT) and differential quadrature rule, an
N-node novel weak form quadrature sandwich beam element is established. Gauss Lobatto Legendre
(GLL) points are utilized as element nodes and GLL quadrature is used to obtain the element stiffness
matrix and work equivalent load. Detailed formulations are given. Convergence study is performed.
Numerical results are presented for sandwich beams with different boundary conditions subjected to
distributed loadings. Different materials for the face sheets and core of the beam structure are considered.
It is shown that the proposed beam element can yield very accurate displacements and stresses as
compared to theoretical solutions.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Sandwich structures are of high stiffness and strength to weight
ratio, as well as its energy absorption capability [1,2], which
accounts for its prevalence in fields of aerospace, naval and civil
constructions. Especially its low weight penalty is of vital impor-
tance to the weight sensitive fields like aeronautics and astronau-
tics [3]. Thus they have been received great attention theoretically
and numerically.

The earliest classical (CL) theory model was established based
on Euler–Bernoulli theory, the transverse stiffness of the core
was considered as infinitely rigid. First order shear deformation
(FOSD) theory was established based on Timoshenko beam theory;
the shear deformation of the core is taken into considerations.
However, the accuracy of FOSD theory is not persuasive when
comparing with the elasticity solution. The high-order sandwich
panel theory (HSAPT) takes into account the in-plane rigidity of
the core and satisfies the elasticity solution. With the progress of
experimental study [4] and theoretical development [5,6], the
influence of the soft core has been gradually taken into account.
To eliminate the error caused by the very soft core configuration,
a new theory, called extended high-order sandwich panel theory
(EHSAPT), has been proposed recently [7]. EHSAPT has been
verified in static as well as in dynamic analysis, which showed
its capability in predicting not only accurate displacements and
stresses in static analysis, but also blast responses and global

buckling problems. Due to the complicated mathematical structure
of the theory, however, it is not an easy task to obtain closed form
solutions for beams with different boundary conditions subjected
to general loadings. Therefore, it is of great necessity to develop
an efficient and accurate numerical computational method based
on the EHSAPT.

Besides the widely used finite element method (FEM), a variety
of new and efficient methods have been developed in recent years
[8–41]. To name a few, strong form differential quadrature method
(DQM or GDQM) [8–14] and harmonic differential quadrature
method (HDQM) [15,16], discrete singular convolution (DSC)
[17], time domain spectral finite element method (SFEM) [18],
the moving least square-Ritz method (MLS-Ritz) [19], strong form
differential quadrature element method (DQEM) [20–32], and
weak form quadrature element method (WQEM) [33–41]. It is seen
that both strong form and weak form differential quadrature meth-
ods can handle complex geometries and overcome the shortcom-
ings existing in the ordinary DQM, thus greatly extended the
application range of the DQM in the area of structural mechanics.

Among the two approaches, the strong form differential quadra-
ture method has advantages of faster accuracy and easier writing
of the governing equations. Its main drawback is difficult to imple-
ment the multiple boundary conditions. On the contrary, the weak
form differential quadrature method is much easier to implement
the multiple boundary conditions. Similar to the FEM and SFEM,
the weak form quadrature element method is also based on the
principle of minimum potential energy, but uses the available
explicit formulations to compute the weighting coefficients of
derivatives at integration points. The stiffness matrix of the WQEM
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is symmetric. Compared to the DQEM, however, WQEM may take
more computational time for the implementation of the governing
equations. The method needs two calculations, one for the deriva-
tives and the other for the integration.

It is seen that to formulate a weak form quadrature element, the
derivatives at integration points are computed explicitly by using
the differential quadrature rule, thus their explicit expressions of
shape functions are not needed. This will greatly reduce the effort
of programming as well as the complexity in presentation. With
the newly proposed method [41], formulations of the weak form
quadrature element do not have any difficulty even the integration
points are not exactly the same as the nodal points. Since the
formulation of the weak form quadrature element is more simple
and flexible as compared to the FEM, therefore, the WQEM is to
be used in the present investigations.

The objective of this article is to establish a novel N-node weak
form quadrature sandwich beam element based on the extended
high order sandwich panel theory. Gauss Lobatto Legendre (GLL)
points are adopted as the elemental nodes and GLL quadrature is
used to obtain the element stiffness matrix and work equivalent
load. Several examples are investigated. Results are compared with
available theoretical solution for verifications. Some new results
are also provided for reference. Conclusions are drawn based on
the results reported herein.

2. High-order sandwich panel theory

For completeness consideration, the extended high-order sand-
wich panel theory (EHSAPT) [7] is briefly introduced. The sandwich
beam, schematically shown in Fig. 1, has a length of a, and thick-
nesses of top and bottom faces, and the core are ft, fb and 2c,
respectively.

The top and bottom faces are modeled as Euler–Bernoulli
beams. The displacements are given by

wtðx; zÞ ¼ wt
0ðxÞ ð1Þ

utðx; tÞ ¼ ut
0ðxÞ � z� c � ft

2

� �
wt

0xðxÞ ð2Þ

wbðx; zÞ ¼ wb
0ðxÞ ð3Þ

ubðx; tÞ ¼ ub
0ðxÞ � zþ c þ fb

2

� �
wb

0xðxÞ ð4Þ

where superscripts t and b refer to the top and bottom faces, wt
0ðxÞ

and wb
0ðxÞ are transverse displacement of the middle plane of the

top and bottom faces, ut
0ðxÞ and ub

0ðxÞ are longitudinal displacement
of the middle plane of the top and bottom faces, and the subscript x
denotes the first order derivative with respect to x.

The core is modeled as a two-dimensional plate. The displace-
ments of the core are assumed as

ucðx; zÞ ¼ uc
0ðxÞ þ /c

0ðxÞzþ uc
2ðxÞz2 þ uc

3ðxÞz3 ð5Þ
wcðx; zÞ ¼ wc

0ðxÞ þwc
1ðxÞzþwc

2ðxÞz2 ð6Þ

where superscript c refers to the core and subscript 0 refers to its
middle surface, x–z is the coordinated set on the middle surface of
the sandwich panel, as shown in Fig. 1, uc

0ðxÞ and wc
0ðxÞ are

longitudinal and transverse displacement, and /c
0ðxÞ is the slope

at the centroid of the core, uc
2ðxÞ; uc

3ðxÞ, wc
1ðxÞ and wc

2ðxÞ are four
undetermined coefficients, respectively.

The four undetermined coefficients in Eqs. (5) and (6) can be
eliminated by applying compatibility requirements in the
transverse direction on the top and bottom face-core interfaces.
After doing so, Eqs. (5) and (6) are given by

ucðx; zÞ ¼ z 1� z2
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The strain energy for the top and bottom face sheets of the
sandwich beam element is

Ut;b ¼ 1
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where t and b denote the top and bottom face sheets, Et,b is the elas-
ticity modulus, and L is the element Length, and n = 2x/L � 1.

The strain energy for the core of the sandwich beam element is

Uc ¼ 1
2

Z L

0

Z c

�c
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where {e(x,z)} contains three strains, namely, ex(x,z), ez(x,z), cxz(x,z).
The detailed expression can be found in [7]. Since the core material
is orthotropic, thus [D] is given by
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Fig. 1. Scketch of a sandwich beam.
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