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a b s t r a c t

The dynamic characteristics of composite thin cylindrical shells are examined through a systematic
order-of-magnitude analysis. The analysis is used to eliminate terms of secondary importance, while
retaining the dominant terms in the dispersion relation and boundary conditions. This results in
analytical expressions that can describe the vibration of composite cylindrical shells with high accuracy
for a wide range of frequencies. Furthermore, the asymptotic analysis is carried out in such a way that the
dynamic edge effect is accounted for when determining the vibration mode shapes and the associated
internal stresses. Numerical examples are also presented. It is shown that the proposed methodology
gives closed-form and analytical results that are in close agreement with numerical solutions of the
equations of motion.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Thin composite shells have been extensively used as structural
components in aerospace and automobile industries, nuclear reac-
tors and many other applications. This is due to their favorable
material properties such as high strength and stiffness-to-weight
ratio. While emerging computational tools for the analysis of com-
posite shells are being constantly developed [27,26], researchers
are finding that the exploration of classical shell theories can con-
tinue to provide novel insights into these structures [23,36,6]. Love
[24] was the first to thoroughly study the vibration of shells with
considerations of the effects of both bending and extension. Other
researchers have developed different theories for vibration of
shells based on Love’s postulates. These theories share Kirchhoff’s
assumption which states that normals to the undeformed midsur-
face remain straight and normal to the deformed midsurface. What
distinguishes these theories are the simplifying assumptions
adopted and the point in the development process where these
assumptions are used. These result in different shell theories such
as Flügge, Love–Timoshenko, Sanders, and Donnell–Mushtari theo-
ries, each with its own set of equations of motion. A comprehensive

review of different theories of shell vibration is summarized in the
classical treatise by Leissa [22].

Among thin shells, cylindrical shells are among the most
commonly used in practice. The equations of motion for the free
vibration of cylindrical shells, however, do not have closed-form
solutions for most boundary conditions and levels of heterogeneity
(e.g., orthotropic). One of the only cases where analytical solutions
do exist is for freely supported boundary conditions [2,7,4],
where the mode shapes can be written as Fourier series in both
longitudinal and circumferential directions. As alternatives to
closed-form analytical solutions, several semi-analytical and
numerical approaches have been proposed to solve for the dynamic
characteristics of composite cylindrical shells. One approach is to
substitute the exact forms of the vibration mode shapes
(exponential in the longitudinal direction and Fourier type in the
circumferential direction) in the equations of motion and boundary
conditions. This results in a polynomial dispersion relation coupled
with a frequency determinant that have to be solved numerically
for the natural frequencies and the associated wavenumbers
[9,37,7]. This approach was first proposed by Forsberg [9] who
solved the Flügge shell equations for isotropic cylindrical shells
for several boundary conditions. While these numerical procedures
lead to exact solutions for the natural frequencies and mode
shapes (up to the accuracy of the numerical solution for the zeros
of the coupled dispersion relation determinant), they do not
provide an in-depth understanding of the vibration behavior of
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cylindrical shells, especially for non-isotropic shells which have
more complicated equations of motion and boundary conditions.
Furthermore, solving the characteristic equations may prove to
be laborious in some cases [5]. Another approach is to use energy
approaches such as the Rayleigh–Ritz method [34,33,21,13] where
the vibration mode shapes in the longitudinal direction are written
in terms of predefined functions (e.g., beam vibration mode
shapes) with undetermined coefficients which are calculated by
invoking a variational principle. While this approach is attractive
in its simplicity, in many cases, a large number of such predefined
functions are needed to accurately account for the edge effect,
characterized by the rapid variation of stresses and strains that of-
ten occurs near the ends of the cylinder. Moreover, as pointed out
by Elishakoff and Wiener [8], while such numerical strategies are
computationally efficient in the low frequency range, they become
less efficient at high frequencies. The energy approach for the cal-
culation of natural frequencies and mode shapes is sometimes
facilitated by adopting additional assumptions, such as zero hoop
and shear strains in strain and kinetic energy expressions [31,32]
that lead to simpler frequency equations, e.g., quadratic and linear
equations instead of sextic and cubic equations.

There has also been success in using simplifying assumptions
other than those on the kinematics of deformation to arrive at ana-
lytical expressions for the natural frequencies of cylindrical shells.
Yu [41], for example, assumed small longitudinal and large circum-
ferential wavenumbers (valid for long cylindrical shells) and used
Donnell shell theory to obtain a simple characteristic equation
for the natural frequencies for three different boundary conditions.
Yu’s equations are similar to the ones associated with lateral vibra-
tion of an Euler–Bernoulli beam. These equations are accurate for
simply supported boundary conditions, but are less accurate for
free edges where complex moment and shear conditions that char-
acterize the edge effect need to be satisfied [35]. Later, Soedel [35]
used Galerkin’s method with general beam mode shapes as the
shape functions for isotropic cylinders with various boundary con-
ditions. The use of Galerkin’s method eliminates the need for Yu’s
approximation and results in a simplified expression for natural
frequencies of cylindrical shells with accuracy that increases as cir-
cumferential wavenumbers grow relative to the longitudinal ones.
The results reported in Soedel’s work are identical to the expres-
sions proposed by Weingarten [38] but are derived using a differ-
ent approach.

Another popular approach to calculate the dynamic characteris-
tics of thin cylindrical shells is through the use of asymptotic
methods. This approach not only provides accurate solutions in
many practical cases, but also can be used to determine the or-
der-of-magnitude relations among the various dimensionless
quantities entering the vibration problem. Following the early
work of Goldenveizer [11], and Ross [29,30], Nau and Simmonds
[25] used the method of composite expansions (MCE) to calculate
the natural frequencies in clamped–clamped cylindrical shells.
MCE was also used to reduce the order of shell vibration problems
(in the presence of non-vanishing pre-stresses) and transform
them into equivalent membrane problems [14]. The composite
expansions used were shown to be uniformly valid over the length
of the shell and accounted for the effects of bending near the edges.
Koga [15] used asymptotic expansions of longitudinal wavenum-
bers in the equations of motion and boundary conditions and
obtained general characteristic equations for isotropic thin
cylindrical shells for a variety of boundary conditions under the
assumption that the vibrations are nearly inextensional. Koga iden-
tified two groups of longitudinal wavenumbers: the first group had
modal properties that varied gradually over the entire length while
the second group was formulated with edge zone solutions that
decay rapidly as the distance from the edge increases to approxi-
mate the edge effect. Williams [39] applied the method of matched

asymptotic expansion (MMAE) to the membrane equations of mo-
tion for thin cylindrical shells and obtained the natural frequencies
for fixed–fixed and fixed–free end conditions which were shown to
be accurate for small circumferential wavenumbers. Unlike the
work of Koga, Williams expanded the displacement fields in terms
of a boundary layer coordinate in the near-edge region and
matched the near-edge solution to the solution away from the
edge. Later, Wong and Bush [40] used the method of matched
asymptotes and extended the analysis in Killian et al. [14] to obtain
analytical results for long cylindrical shells for the axisymmetric
mode shapes with frequencies below the ring frequency.

The goal of this paper is to add to the above literature with the
derivation of a new set of analytical expressions that describe the
free vibration of symmetric and orthotropic composite laminated
cylinders with high accuracy for a wide range of frequencies. The
challenge here, as noted by previous researchers, is that the equa-
tions of motion and boundary conditions, which are complex even
for the case of isotropic cylindrical shells, become more involved
for laminated composite cylinders. Our approach is to use asymp-
totic methods to classify the importance of the dominant terms,
through a systematic order-of-magnitude analysis.

After briefly reviewing the Love–Timoshenko equations in Sec-
tion 2, we proceed with an order-of-magnitude analysis of the
eighth-order dispersion relation in Section 3.1. It is shown how this
relation can be reduced to decoupled bi-quadratic equations, pro-
viding relatively simple relationships between the natural fre-
quency and wavenumber for both small and large wavenumbers.
Asymptotic analysis is then used in Section 3.2 to derive relatively
transparent expressions for the internal forces and moments. In
Section 4, these expressions are used to satisfy the boundary con-
ditions leading to simplified analytical expressions for the natural
frequencies and mode shapes. Throughout Sections 3 and 4, it is
shown how the analytical results for the dispersion relation,
boundary forces and free-vibration modal properties compare
favorably with numerical solutions based on the original Love–
Timoshenko equations, particularly in capturing the dynamic edge
effect. Furthermore, it is shown how these analytical results pro-
vide insights into the relationships between the dynamic behavior
and the parameters that define the composite cylinder. It is noted
that these results are useful beyond the theoretical characteriza-
tion of vibrations of thin cylindrical shells. For instance, they can
be used in system identification where guidance is needed to esti-
mate the parameters such as the elastic properties from vibration
measurements.

Our approach in this paper is inspired by the work of Bolotin [3],
who developed asymptotic solutions with correction terms at the
boundaries, and by the extension of this work by Elishakoff and
Wiener [8]. Huang and Dong [12] also argued that the edge effect
resembles the rapid decay of elastostatic self-equilibrated stress
distributions and can be viewed as the dynamic counterpart of
Saint Venant’s principle. They, however, used a semi-analytical
procedure where the displacement field in the radial direction
was discretized via quadratic interpolating functions. Here, we
specifically draw upon the work of Koga [15] which, although
approximate in nature, introduced the concept of partitioning the
waveforms into two sets, those that vary gradually over the entire
length and those that represent the edge-zone solutions which de-
cay rapidly as the distance from the end increases.

The approach adopted herein is also inspired by recent papers
by Ladevéze [18,20] which are based on a significantly different
application of Saint Venant’s principle: the solution can be parti-
tioned into two parts, one in which the wavelength is large and
one in which the wavelength is small and localized in a region
(see also [17,19]. A recent work [1] based on the concepts put for-
ward by Ladevéze has focused on capturing edge effects in ther-
moelastically deforming composite pipes.
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