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a b s t r a c t

A shear deformation beam model and new shear correction factors are presented for nonhomogeneous
microbeams. The governing equations and corresponding boundary conditions in bending and buckling
are obtained by implementing minimum total potential energy principle. Bending and buckling problems
of a simply supported functionally graded microbeam are analytically solved by Navier solution proce-
dure. Several comparative results are given for different material property gradient index, thickness-
to-material length scale parameter ratio (or vice versa), slenderness ratio and shear correction factors.
It is observed that size effect and shear deformation are more significant for lower values of thickness-
to-material length scale parameter and slenderness ratios, respectively.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Microbeams that the characteristic dimensions are on the order
of microns and sub-microns, are the key structures of many micro-
electro mechanical systems (MEMS) such as micro-resonators [1],
Atomic Force Microscopes [2], micro-actuators [3], and micro-
switches [4]. Recently, the existence of size effects on deformation
behavior associated with microstructure has been experimentally
observed with some experiments such as micro-torsion [5] and mi-
cro-bending tests [6]. These microstructural effects cannot be ta-
ken into account by conventional continuum theories without
any additional material length scale parameters. Therefore, several
non-classical continuum theories have been proposed to predict
the mechanical behaviors of small-scale structures, such as couple
stress theory [7–9], micropolar theory [10], nonlocal elasticity the-
ory [11,12] and strain gradient theories [13–16].

The modified strain gradient theory (MSGT) [17] is one of the
above-mentioned non-classical theories in which strain energy
density contains second-order deformation gradients (dilatation
gradient vector, deviatoric stretch and symmetric rotation gradient
tensors) in addition to first-order deformation gradient (symmetric
strain tensor). For linear elastic isotropic materials, the formula-
tions and governing equations include three additional material
length scale parameters related to higher-order deformation
gradients besides two classical ones. This popular theory has been
employed to investigate mechanical behaviors of size-dependent

one-dimensional homogeneous microstructures, such as bars
[18–21] and beams [22–27]. More recently, finite element formu-
lations based on this theory have been derived for Bernoulli–Euler
and Timoshenko microbeam models [28,29].

Also, in the absence of dilatation gradient vector and deviatoric
stretch gradient tensor in formulations and governing equations of
MSGT, this theory will be transformed to another non-classical the-
ory called as modified couple stress theory (MCST) [30]. This the-
ory has been used to analyze static and dynamic responses of
microbeams [31–39].

Functionally graded materials (FGMs) can be described as a new
improved kind of composite materials in which material properties
change from one surface to another continuously and smoothly. In
conventional laminated composites, high stress concentrations
may consist at the interface of two-layer due to sudden change
in material properties. On the contrary, undesirable stress concen-
trations can be prevented in FGMs and they have superior thermo-
mechanical properties. Because of FGMs are more advantages than
homogeneous and laminated composites, they have a wide range
of applications in many engineering fields such as aerospace, bio-
medicine, nuclear, electronics, optics, and mechanical. Many stud-
ies have been performed to investigate static and dynamic
responses of beams, plates and shells made of functionally graded
materials with various solution methods [40–47]. Recently, use of
microstructures made of FGM has increased in many applications
as an essential part of MEMS [48], micro-actuators [49] and shape
memory alloys [50]. Several studies have been performed to deter-
mine mechanical characteristics of nonhomogeneous microbars
and microbeams. For instance, Akgöz and Civalek [51] presented
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a study on longitudinal vibration analysis of axially functionally
graded strain gradient microbars. Sadeghi et al. [52] investigated
the effect of material length scale parameters on analysis of func-
tionally graded micro-cylinders based on MSGT. Kahrobaiyan
et al. [53], Akgöz and Civalek [54], Zhang et al. [55], Ansari et al.
[56] and Tajalli et al. [57] developed strain gradient Bernoulli–Eu-
ler and Timoshenko beam models for FGM microbeams, respec-
tively. More recently, a microstructure-dependent Bernoulli–
Euler beam model is developed for bilayered microbeams on the
basis of the strain gradient elasticity theory [58].

As a result of literature survey, it can be seen that various beam
theories have been proposed to investigate static and dynamic
behaviors of beam-type structures. The well-known of these are
Euler–Bernoulli (EBT) and Timoshenko (TBT) beam theories.
According to assumptions in EBT, effects of shear deformation
are ignored. The use of this theory can be suitable for slender
beams with a large aspect ratio. However, effects of shear deforma-
tion become more prominent for moderately thick beams. TBT [59]
known as first-order shear deformation beam theory is an earlier
shear deformation beam theory. TBT assumes that transverse shear
stress and strain are uniform throughout the height of the beam.
Because of the absence of transverse shear stress and strain at
the top and bottom surfaces of the beam, a shear correction factor
is required in formulations. Subsequently, several higher-order
shear deformation beam theories (HBTs) including parabolic
(third-order) beam theory (PBT) [60,61], trigonometric (sinusoidal)
beam theory (SBT) [62], hyperbolic beam theory [63], exponential
beam theory [64] and a general exponential beam theory [65] have
been proposed as alternatives to TBT. The advantage of HBTs is pro-
viding of the zero transverse shear stress and strain situation at the
top and bottom surfaces of the beam without any shear correction
factors. Recent times, various microstructure-dependent beam
models based on HBTs have been introduced in conjunction with
nonlocal elasticity theory [66–74], modified couple stress and
strain gradient theories [75–80].

One of the objectives of this paper is to develop a shear defor-
mation beam model for size-dependent nonhomogeneous micro-
beams. The other one is to propose new shear correction factors
including additional coefficients in TBT for analysis of micro-
beams. The governing equations and corresponding boundary
conditions in bending and buckling are obtained by implementing
of minimum total potential energy principle. Bending and buck-
ling problems of a simply supported FGM microbeam are analyt-
ically solved by Navier solution procedure. The newly obtained
results are compared with the results of other beam theories as
EBT and TBT and other classical and modified couple stress mod-
els. A detailed parametric study is performed to show on influ-
ences of gradient index, thickness-to-material length scale
parameter ratio (or vice versa), slenderness ratio and shear cor-
rection factors.

2. Theory and formulation

The modified strain gradient elasticity theory was proposed by
Lam et al. [17] includes higher-order deformation gradients be-
sides classical strain tensor. They can be identified by the Lamé
constants and three additional material length scale parameters.
The total strain energy density wi can be expressed for linear elas-
tic isotropic materials as [17,81]
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1
2

keiiejj þ l eijeij þ l2
0cici þ l2

1g
ð1Þ
ijk gð1Þijk þ l2

2v
s
ijv

s
ij

� �
ð1Þ

in which eij; ci;g
ð1Þ
ijk and vs

ij denote the components of the strain ten-
sor e, the dilatation gradient vector c, the deviatoric stretch gradient

tensor g(1) and the symmetric rotation gradient tensor vs, respec-
tively and are defined as [17]
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where ui represents the components of displacement vector u and hi

represents the components of rotation vector h, also d and eijk are
the Kronecker delta and alternating symbols, respectively. In addi-
tion, l0, l1, l2 are additional material length scale parameters related
to dilatation gradients, deviatoric stretch gradients and rotation
gradients, respectively. Also, k and l are the Lamé constants as

k ¼ Ev
ð1þ vÞð1� 2vÞ ; l ¼ E
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The components of Cauchy (classical) stress tensor r and high-
er-order stress tensors p, s(1) and ms are respectively conjugated to
e, c, g(1) and vs can be defined by taking derivatives of the total
strain energy density with respect to work-conjugated strains as
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According to modified strain gradient elasticity theory, the
strain energy U can be written by [17]

U ¼ 1
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The displacement components of an initially straight beam on
the basis of sinusoidal beam theory (see Fig. 1) can be written as
[62]

u1ðx; zÞ ¼ uðxÞ � z
dwðxÞ

dx
þ RðzÞ dwðxÞ

dx
�uðxÞ

� �
;

u2ðx; zÞ ¼ 0;
u3ðx; zÞ ¼ wðxÞ ð13Þ

where u1,u2 and u3 are the x-, y- and z-components of the displace-
ment vector, and also u and w are the axial and transverse displace-
ments, u is the angle of rotation of the cross-sections about y-axis
of any point on the mid-plane of the beam, respectively. R(z) is a
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Fig. 1. Geometry of an axially loaded functionally graded microbeam.
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