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a b s t r a c t

Using reproducing kernel particle method (RKPM), concentrically and eccentrically functionally graded
stiffened plates (FGSPs) are analyzed based on first order shear deformation theory (FSDT). The plates
are subjected to uniformly distributed loads with simply supported and clamped boundary conditions.
The interactions between the plate and stiffeners are imposed by compatibility equations. Metal-ceramic
composition is assumed as the functionally graded material (FGM). Material properties vary through the
thickness direction according to the power law of volume fraction. Mori–Tanaka scheme is used to obtain
effective material properties. Poisson’s ratios of plates and stiffeners are taken to be constant. Full
transformation approach is used to enforce essential boundary conditions. Effects of eccentricity of the
stiffeners, dimensionless support domain parameter, dimensionless thickness, boundary conditions
and the volume fractions of the constituents on the behavior of the stiffened plates are investigated.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Stiffened plates are used in several engineering applications to
improve efficiency of the structures in terms of strength/weight.
The application areas of stiffened plates are in aeronautical and
mechanical engineering such as aerospace structures, road bridges,
and ship hulls.

The earliest models used to simulate the behavior of stiffened
plates include grillage model [1] and orthotropic model [2], which
were not usable in general problems. Subsequently, models incor-
porating new concept have been developed which treat the plate
and stiffeners as standalone structures and compatibility equations
are introduced to consider interactions between the plate and stiff-
eners [3–5].

Various methods used to analyze the stiffened plate problems
are include Rayleigh–Ritz method [6,7], finite difference method
(FDM) [8], finite element method (FEM) [5,9–13], constraint
method [4], semi analytical finite difference method [14] and finite
strip method [15]. Wen et al. used boundary element method to
analyze the shear deformable stiffened plates. They used coupled
boundary element formulation of shear deformable plate and
two-dimensional plane stress elasticity [16]. Peng et al. [3]
analyzed rectangular stiffened plates based on first order shear

deformation theory (FSDT) and element-free Galerkin (EFG) meth-
od. They imposed compatibility conditions between the plate and
stiffeners for both concentric and eccentric stiffeners.

Numerical methods are essential for simulating stiffened plates.
Among them FEM gained considerable attentions because of its
efficiency and stability. However, the shortcoming of FEM is its
inherent dependency on mesh. To eliminate this drawback the idea
of well-known meshfree or meshless method that relies only on
nodes is introduced [17,18].

Belytschko et al. [19] proposed the EFG method subsequently
used to analyze thin plates [20], thin shells [21] and solids [19,22].

Smoothed particle hydrodynamics (SPH) is also one of the
meshfree methods considered as a kernel-based interpolation
method first used for modeling astrophysical phenomena [23,24].
Liu et al. [25,26] found that the SPH approach has considerable
weakness in satisfying consistency conditions specially on
boundaries. The stability of SPH is discussed by Aluru [27]. The
consistency of SPH can be established by introducing a correction
function. This approach was proposed by Liu et al. [25,26] and
named it as reproducing kernel particle method (RKPM). RKPM
has been used for solving several linear and non-linear problems
in mechanics [26,28–30]. This method has also been used for
analysis of composite plates [31] and functionally graded plates
[32] which shows good accuracy and stability characteristics in
solving solid mechanics problems.

The essential boundary conditions cannot be directly imposed
in RKPM method due to the fact that RKPM shape functions do
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not satisfy the Kronecker delta property. Several approaches are
used to impose boundary conditions including Lagrangian multi-
plier method [19], penalty method [33], and full transformation
method [34]. In addition, Wang et al. [35] proposed special
technique to directly impose essential boundary conditions for
EFG method using local Kronecker delta property of the moving
least square (MLS) approximation.

Functionally graded materials (FGMs) made up of two constitu-
ents e.g. metal and ceramic are widely used. The composition is
varied continuously along certain directions according to volume
fraction from a ceramic-rich surface to a metal-rich surface [36].

Because of unique features of FGMs like their high gradient
temperature resistance, they can be used in wide range of applica-
tions such as spacecraft structures. Furthermore, in an FGM,
material properties can be customized to optimize the desired
characteristics, e.g. minimizing the maximum deflection of the
plates [37].

In recent years, many investigations have been done in the field
of functionally graded plates (FGPs). Vel and Batra [38,39]
presented an exact solution for thermoelastic deformations and
vibration of FGPs. Qian et al. analyzed elastic and thermoelastic
deformations of FG plates. They employed the meshless local
Petrov–Galerkin (MLPG) method to solve the governing equations
of plates [40–42]. The bending and free vibration analyses of FGPs
based on FSDT were presented by Thai and Choi [43]. Gilhooly et al.
studied thick FGPs based on high-order shear and normal deforma-
tion plate theory using MLPG method [44]. A thorough review of
meshless methods including EFG and RKPM for laminated and
functionally graded plates and shells can be found in [45]. More-
over, a critical review of recent researches on FGPs were presented
in [46].

In addition, FEM is widely used to analyze FGPs pioneered by
Reddy [36]. He proposed a general formulation for FGPs using
the third-order shear deformation plate theory and developed its
associated finite element (FE) model. Naghdabadi and Hosseini
proposed an FE formulation to analyze FG plates and shells [47].
Valizadeh et al. developed a NURBS-based finite element for static
bending, vibration, buckling and flutter analyses of FGPs [48]. The
static and vibration analyses of FGPs were presented by Ferreira
et al. using collocation method employing shear deformation
theories [49,50]. Zhang and Zhou proposed a formulation to
analyze the FGPs based on physical neutral surface of the plate
[51]. Moreover, the influence of neutral surface position on the
non-linear behavior of FGPs were investigated by [52,53].

Ray and Sachade [54] suggested an FE model for the static
analysis of FG plates integrated with a layer of piezoelectric fiber
reinforced composite (PFRC) material. They investigated the effect
of varying piezoelectric fiber angle in the PFRC layer on its actuat-
ing capability of the FG plates.

In this paper, the functionally graded stiffened plates (FGSPs) is
analyzed based on FSDT using RKPM. Circular and rectangular
plates under uniformly distributed loads for both simply supported
and clamped boundary conditions are investigated. A metal-
ceramic composition is assumed as the FGM in which mechanical
properties vary only along the thickness direction and the Poisson’s
ratio is considered to be constant. The principle of minimum
potential energy is employed to obtain Galerkin weak-form formu-
lation of the FGSPs. The neutral-surface based formulation is used
and the exact shear correction factor is applied. 1D- and 2D- RKPM
shape functions are utilized to approximate deformation fields of
stiffeners and the plate, respectively. The RKPM is used to explore
its capability to analyze stiffened plates, which is an extension for
development of numerical studies on functionally graded struc-
tures. The full transformation method applied in this study can
be achieved by reconstruction of RKPM shape functions which
possess Kronecker delta property, in this way boundary conditions

can be imposed directly. The interactions between the plate and
stiffeners are imposed by compatibility equations in which deflec-
tions of stiffeners are considered to be equal to that of the plate
along the line of interaction.

2. Functionally graded material

Consider a functionally graded plate composed of ceramic and
metal phases. The material on the top surface of the plate is
ceramic and is graded to metal at the bottom surface of the plate
by the power law distribution. The volume fractions of ceramic
Vc and metal Vm are given by

Vc ¼
1
2
þ z0

h

� �n

; Vm ¼ 1� Vc; ð1Þ

where z0 is the thickness coordinate (�h/2 6 z0 6 h/2), and n is the
material constant. Fig. 1 depicts the through-the-thickness
variation of the ceramic phase volume fraction for different values
of n.

The homogenized material properties are evaluated using
Mori–Tanaka formulation [55]. According to the Mori–Tanaka
scheme the effective elastic properties of the FGM are given by

K � Kc

Km � Kc
¼ Vm

1þ ð1� VmÞ 3ðKm�KcÞ
3Kcþ4Gc

;

G� Gc

Gm � Gc
¼ Vm

1þ ð1� VmÞ Gm�Gc
Gcþfc

;

ð2Þ

where

fc ¼
Gcð9Kc þ 8GcÞ

6ðKc þ 2GcÞ
; ð3Þ

in which K and G are bulk modulus and shear modulus, respectively.
The subscript c and m refer to ceramic and metal phases, respec-
tively. K and G are related to Young’s modules, E, and Poisson’s ratio,
m, by the following equations

E ¼ 9KG
3K þ G

; m ¼ 3K � 2G
2ð3K þ GÞ : ð4Þ

Fig. 1. Through-the-thickness variation of the ceramic phase volume fraction for
different values of n.
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