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a b s t r a c t

In the current paper, a rigorous proof of an important theorem which has been used frequently for der-
ivation of field equations of first gradient elasticity is given for the first time. After that, due to the wide
use of nanoparticles as reinforcements to different types of matrices, the nanotube-reinforced matrix
problem is investigated in cylindrical coordinates. Then, using the most general model for an isotropic
gradient elastic material, the displacement formulation is employed to solve the governing equations
of the nanotube-reinforced matrix problem. For this purpose, the generalized perfect interface conditions
for the nonhomogeneous representative volume element (RVE) are introduced and used to derive the
solution. Numerical results reveal that as the matrix characteristic length parameter becomes larger in
comparison to that of nanotube, the difference between the results of the classical theory and the strain
gradient theory will increase and classical theory cannot accurately predict the mechanical response of
the RVE; In addition, increasing the nanotube’s volume fraction results in reduction of the maximum
compressive stress and a rise in the overall stiffness of RVE.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the growth of nanoscience and nanotechnology, during
the past two decades new branches of engineering, medicine and
science have been developed. Ijima’s discovery [1] of carbon nano-
tubes (NTs) with unique electrical and mechanical properties made
them one of the best modern materials used in the field of nano-
technology [2]. Compared with conventional polymer composites,
nanotube-reinforced polymer composites have significantly in-
creased strength and stiffness [3].

In order to determine the mechanical behavior of nanomateri-
als, there are two main approaches: (1) Experimental methods
and (2) Mathematical modeling. Since the experimental methods
are expensive and difficult to apply at the nanoscale, the second
approach is used more, which is divided into the following
categories: (a) atomistic modeling, (b) hybrid molecular-structural
mechanics and (c) continuum mechanics. Simulating large scale
atomic systems using the first two methods cost much more time
in comparison with that of continuum mechanics; furthermore,
formulation of former methods is more complex than the latter
one. Thus, it indicates that the continuum mechanics can be used
as an alternative solution to inspect mechanical behavior at
nanoscale.

The inability of classical continuum mechanics in explaining the
size effects observed in very small scales led to the development of
generalized theories such as micropolar, micromorphic, couple
stress, nonlocal and strain gradient theory. The aforementioned
theories were used by researchers to study the elastic and plastic
deformation in different areas such as micropolar plasticity in crys-
tals [4]. Among these theories, strain gradient theory is a theory
which, in addition to the strain, gradients of strain must be consid-
ered in the strain energy density function of the deformable body.
The beginning of investigation into the strain gradient theory can
be found in studies of Mindlin [5] and Kröner [6]. After 1960s,
many studies on the Mindlin’s general strain gradient theory were
carried out. In the early 1990s, Aifantis and his coworkers [7] based
on previous studies in the field of plasticity [8] and nonlinear elas-
ticity [9] proposed a special case of the strain gradient theory
where strain and also Laplacian of strain were observed in consti-
tutive equations. Compared with models in [5,6], the Aifantis mod-
el (simplified strain gradient theory) [7] is of more practical
importance. This stems from its simpler implementation not only
because just one internal length is involved, but also because of
the structure of the governing equations which is dominated by
the Laplacian – an operator that has been studied extensively in
many scientific fields [10]. Also, a more general form of these
Laplacian-based constitutive equations are studied in detail by
Aifantis [11]. Furthermore, Askes and Gitman [12] compared the
Aifantis model and Eringen’s nonlocal theory [13] and concluded
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that Aifantis theory is more appropriate in FEM analysis. This is
due to the Laplacian-dominating structure of the governing equa-
tions and the ability to use the so-called Ru-Aifantis theorem
[14]. In recent years, researchers used Aifantis model to study Kir-
chhoff microplate [15], static deformation of an elastic circular mi-
cro-plate [16], half-space and half-plane contact problems [17] and
the size-dependent behavior of bilayered microbeams [18].

Yang et al. [19] developed the modified couple stress theory
based on strain gradient theory. In this way, strain tensor and rota-
tion gradient were the only factors contributing to the strain energy
density function. They also provided modified constitutive equation
for couple stress theory in which only a new length scale parameter
can be seen. Also, modified couple stress theory has been employed
to investigate the thermal effect on buckling and free vibration
behavior of functionally graded microbeams [20], microstructure-
dependent behavior of laminated composite Timoshenko beam
[21] and size-dependent buckling behavior of functionally graded
microbeam in an elastic medium [22]. As stated above based on this
theory, in addition to strain, rotation gradient contributes to defor-
mation. Hence, if the curl of displacement field vanishes in special
cases, e.g. extension of microbar, based on this theory, the size effect
cannot be captured. Lam et al. [23] presented a new modified strain
gradient theory based on Mindlin’s strain gradient theory. They
introduced three new length scale parameters for the material, as
well. Experimental tests on epoxy beam were performed to extract
characteristic length parameters. In this theory, the asymmetric part
of curvature tensor is not the only factor which has an effect on the
deformation of the body. In addition, the symmetric part is involved.
Mohammadi and Mahzoon [24] investigated the thermal effects on
postbuckling of nonlinear microbeams and Lam et al. model [23]
was employed to capture size effects. Based on an earlier study
[23], Wang and Lam [25] employed a particular format of strain gra-
dient elasticity in which the only contributing higher-order term is
rotation gradient leading to the so called couple stress theory. Askes
and Aifantis [26] showed that the claim of Wang and Lam that the
classical solution can be used as a substitute for gradient solution
is not valid in general. They investigated the shear layer problem
to prove this issue and obtained that the difference between classical
and gradient solution depends on the size of specimen. Also, they
suggested the well-known methodology of Ru and Aifantis [14] to
implement the classical solution as a surrogate for gradient solution.
Furthermore, they concluded that for applying the aforementioned
methodology, the rotational gradient should be accompanied with
dilatational gradients or deviatoric stretch gradients.

There are various studies on strain gradient theory in order to
investigate the size effect at nanoscale. Some of studies in this the-
ory on structures such as bars, beams, and shells are used to inves-
tigate the static and dynamic behavior of nanostructures like
carbon NTs. Askes and Aifantis [27] have studied bending wave
dispersion in NTs, using the Aifantis model. For this purpose they
have used Euler – Bernoulli and Timoshenko beam models and
compared their results with molecular dynamics simulations. They
have concluded that the instability of wave frequency can be re-
moved if the inertia gradient is considered in the governing equa-
tions of the strain gradient theory. Wang [28], using strain gradient
theory and taking into account the effect of inertia gradient, was
able to study wave propagation in fluid-carrying NTs. Wang et al.
[29] examined the mechanical and thermal buckling of NTs placed
in the elastic matrix. For this purpose, Euler – Bernoulli and Timo-
shenko beam theories have been employed and the results indicate
that the critical buckling load depends on the size effects and elas-
tic matrix’s stiffness. To investigate the vibrational behavior of sin-
gle-walled NTs, Ansari et al. [30] have used Euler – Bernoulli and
Timoshenko beam models based on strain gradient theory. The re-
sults signify that as the NT aspect ratio is reduced to about 6, the
differences between the various gradient theories will be greater

and strain gradient theory with the effects of inertia gradient gives
better results which are consistent with the results of molecular
dynamics simulations.

In addition to the aforementioned studies, researchers used the
classical problems of thick-walled cylinder and sphere under pres-
sure in the cylindrical and spherical coordinates to conduct a series
of studies on nanostructures. Collin et al. [31] studied the static re-
sponses of thick-walled cylinder problem affected by the changes
in special sets of strain gradient parameters appeared in boundary
conditions. On the other hand, Gao and Park [32] presented required
relations for thick-walled cylinder under pressure considering the
Aifantis model and aforementioned problem was inspected. It was
observed that when the material length scale is comparable to the
radius of the cylinder, size effects are dominant. Gao et al. [33] also
investigated the problem of thick-walled sphere employing the
Aifantis model and the obtained results were similar to previous
work [32]. Considering the surface effects, Zheng et al. [34] have
studied the NT under pressure using a simplified strain gradient the-
ory. They have concluded that the effects of the length scale param-
eter compared to those of directional surface energy length scale
parameter on stress distribution of the NT are different. When length
scale parameter decreases, the stress distribution will be closer to
the classical theory; however, by increasing the length scale of the
surface energy parameter, the results tend to the classical theory.

In recent years, solving the problem of inhomogeneity in gradi-
ent elasticity has attracted the researchers’ interest. Among them,
Gao and Ma [35] formulated the Eshelby problem of infinite homo-
geneous isotropic elastic material containing an inhomogeneity
using the Aifantis model. They derived a new Eshelby tensor which
consists of a classical part and a gradient part. Also, they obtained
the components of the new Eshelby tensor for a spherical inhomo-
geneity and showed that when the inhomogeneity radius is small,
the effect of the gradient part is large and cannot be ignored. Gao
and Ma [36], extending the previous work, obtained a solution
for the Eshelby problem of finite homogeneous isotropic elastic
spherical matrix containing an concentric spherical inhomogeneity
using the Aifantis model. Also, they showed that the finite Eshelby
tensor [36], compared with the infinite Eshelby tensor [35], de-
pends on not only the position, inhomogeneity size and material
length scale parameter, but also the matrix size. As can be seen
in the sequel, the present work can also be considered as solving
an inhomogeneity problem in gradient elasticity.

Considering that the NTs have been used as reinforcement in
some applications of polymer nanocomposites; it is very important
that a volume element consisting of a NT surrounded by polymeric
matrix be scrutinized to determine the stress distribution in each
component. This makes it possible to investigate the NT load-car-
rying capability in polymer reinforcing. Since the nanoscale is dis-
cussed, considering the size effect as a factor in determining the
behavior of nanomaterials is important.

To the best of authors’ knowledge, the only research on core/
shell nanowire was conducted by Aifantis et al. [37] based on strain
gradient plasticity and no research has been carried out on NTs
surrounded by a matrix using strain gradient elasticity theory.
The aim of this study is to consider the effect of microstructural
and geometrical characteristics on the mechanical behavior of
the representative volume element (RVE). Through a review on
derivation of field equations, an important theorem which plays
a fundamental role in deriving the field equations is proven for
the first time (see Appendix A). Then, using the energy density
function purposed by Mindlin [5], response of Navier equations
was extracted for the NT-reinforced matrix by employing the solu-
tion of thick-walled cylinder problem. After that, considering per-
fect interface assumption, boundary conditions are extracted for
the aforementioned problem. At the end, numerical results are
presented and microstructural effects are discussed.
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