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Laminated plates with glass skin layers and a core layer from soft polymers are widely used in the civil
engineering. Photovoltaic panels currently available on the market are composed from stiff front and
back layers and a solar cell layer embedded in a soft polymeric encapsulant. In this paper a layer-wise
theory for the structural analysis of glass and photovoltaic laminates is developed. Starting from govern-
ing equations for individual layers, kinematical constraints and appropriate interaction forces, a twelfth
order system of partial differential equations is derived. The primary variables in the theory include the
Airy stress function, the deflection function and the vector of relative in-plane displacements of skin lay-
ers. For symmetric laminates a system of uncoupled differential equations with respect to scalar poten-
tials is presented. Three of them correspond to the first order shear deformation plate. The new additional
second order differential equation provides a correction function according to the layer-wise theory.
Closed form analytical solutions for a plate strip are derived to illustrate the essential influence of this
correction for laminates with soft core layer. The importance of additional boundary conditions is shown
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for examples of free and framed plate edges.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Laminated plates with glass skin layers and a core layer from
Polyvinyl Butyral (PVB) are widely used in the civil engineering
and automotive industry [1-3]. Crystalline or thin film photovol-
taic modules currently available on the market are composed from
front and back glass or polymer layers and a solar cell layer embed-
ded in a polymeric encapsulant [4-6]. Fig. 1 illustrates basic com-
ponents of a crystalline silicon solar cell panel. Material like
Ethylene Vinyl Acetate (EVA) and PVB are usually applied to encap-
sulate the solar cells [4]. In new lightweight variants of photovol-
taic modules the front and back plates are made from plastics.
These skin layers are connected together by a transparent Polyure-
thane (PUR), in which the solar cells are embedded [7]. Certifica-
tion procedures of terrestrial crystalline photovoltaic modules are
given in the norm [8]. Among various requirements, mechanical
tests to simulate wind and snow loads are prescribed. Additionally,
solar modules must withstand non-stationary thermal profiles due
to daily or season-dependent temperature cycles.

For design of solar modules it is beneficial to analyze the suit-
ability of materials like PVB, EVA or PUR for embedding solar cells.
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These encapsulates have to compensate different mechanical and
thermal strains of bottom and top layers. Delaminations between
the layers are not allowed and solar cells have to be protected
against oxygen and water. Mechanical properties of soft encapsu-
late materials are usually affected by the manufacturing process.
Furthermore, environmental effects can lead to changes in
mechanical behavior over time. Therefore a reliable assessment
of the stiffness properties is only possible by the testing of a proto-
type, e.g. by the bending testing of a beam or a plate. To evaluate
the test results robust relationships between the applied load,
the deflection as well as the transverse shear stress/strain of the
encapsulant layer are desirable. Furthermore, such relationships
are useful in design of photovoltaic modules.

One feature of laminated glass plates or laminates used in
photovoltaic industry is the layered composite with relatively
stiff skin layers and relatively thin and compliant polymer
encapsulant layer. Let G; be the shear modulus of the glass skin
layer and G, the shear modulus of the polymeric core layer. The
ratio of the shear moduli u = G./G; for materials used in photo-
voltaics is in the range between 10~ and 1072 , depending on
the type of polymer and the temperature [4,7,9]. For classical
sandwich applications this ratio is in the range of 1072 and
107", In addition, in classical sandwich structures the face sheets
are thin in comparison with the core, while in photovoltaic
applications the face layers are relatively thick and the core is
relatively thin.
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Fig. 1. Components of crystalline solar modules.

To analyze the behavior of laminated plates various structural
mechanics models are available. A widely used approach for sand-
wich and laminate structures is the first order shear deformation
theory (FSDT) [10,11]. The principal assumption of this theory is
that the normals to the midsurface of a plate behave like rigid
bodies during the deformation. The mechanical interactions be-
tween the cross sections is characterized by forces and moments.
The advantage of this theory is the possibility to solve the govern-
ing differential equations in a closed analytical form for plates of
various shapes. Closed form solutions or approximate analytical
solutions for plates according to the FSDT are presented in [10-
16], among others. A problem related to FSDT is to estimate effective
characteristics of the layered system, in particular the properties
related to the transverse shear deformation. Closed form relation-
ships are developed to find effective elastic stiffness of a laminate
from the properties of layers, e.g. [4]. However, numerical
techniques are required to estimate the effective transverse shear
deformation in the inelastic range, [17,18]. Furthermore, for lami-
nates with extreme differences in the stiffness properties of con-
stituents the FSDT fails to predict the deformation properties of
the laminate correctly, as shown for example in [4,7] for beams.

Laminated glass and photovoltaic panels can also be analyzed
by the use of three-dimensional theory of elasticity and applying
the finite element method for the numerical solution. To this end
various types of continuum shell finite elements and three-dimen-
sional solid finite elements are available in commercial codes, e.g.
[19]. Due to extreme differences in material properties of constit-
uents and the relatively low thickness of the core layer consider-
able numerical effort is required to obtain the results with a
desired accuracy [4,20]. In particular, care should be taken for fi-
nite element meshing the core layer in order to compute the trans-
verse shear strains and the related stresses accurately.

Recently zig-zag and layer-wise theories were developed and
applied to analyze laminated structures. A zig-zag theory approxi-
mates the displacements by piecewise functions with respect to
the thickness coordinate such that the compatibility between the
layers is fulfilled. Then the governing equations of the three-
dimensional elasticity theory are reduced to the two-dimensional
plate equations by means of variational methods or asymptotic
techniques [21-23]. Within the layer-wise theory (LWT) balance
and constitutive equations are derived for individual layers. With
constitutive assumptions for interaction forces and compatibility
conditions a model for the layered system is derived. For laminated
beams with core layer from soft polymers LWT are presented in
[1-4,7], among others. To derive the robust equations the assump-
tion is made that glass skin layers deform according to the Ber-
noulli-Euler beam theory, i.e. the transverse shear deformations

are negligible. The soft core layer carries out the transverse shear
stress only, while the bending moment and the normal force are
negligible. In [1,4,7] results of three point bending tests for beams
with core layers from various polymers are presented. Closed form
solutions derived with LWT agree well with the experimental data.
Furthermore, as shown in [3,4,7] the solutions according to LWT
agree well with the results of the three-dimensional finite element
analysis. The LWT was found to be more attractive if compared to
the zig-zag theories since the load transfer between the layers can
be analyzed explicitly. Furthermore, with proper assumptions
about stiffness and/or deformation of individual layers, LWT can
provide equations that are easier in comparison to the zig-zag the-
ories, and can be solved in a closed analytical form. Despite the fact
that LWT was found efficient, the majority of publications deal
only with beam equations. Recently a LWT for laminated glass
plates is proposed [24]. The deformation of skin layers is described
by the Kirchhoff plate theory, while the core is modeled as the
shear layer, that is, the membrane and bending states are ignored.

The aim of this paper is to derive a theory for the use in analysis
and design of glass and photovoltaic panels. In addition to the pre-
vious work we address the following problems.

o For photovoltaic panels several extensions to the available the-
ories of beams [3,4,7] and plates [24] are required. Indeed, solar
cells do not contribute essentially to the overall bending and
membrane stiffness of the laminate. Therefore, for the global
deformation analysis the core layer including the polymer
encapsulant with embedded solar cells, can be considered as
homogenized “shear” layer. This is consistent with the available
theories for laminated glass [3,24]. However, for photovoltaic
panels robust relationships are required to compute the local
loading/deformation exerted on the solar cells from the global
characteristics of the laminate.

e For laminated glass beams/plates only the lateral forces and
deformations are analyzed [3,24]. Solar panels are usually posi-
tioned at a certain angle to the horizontal. Therefore, mechani-
cal loads like the panel or snow weight produce the tangential
force components acting on the laminate. This requires to
account for in-plane stress/deformation state as well as addi-
tional shear stress/deformation of the laminate.

e The edges of photovoltaic laminates are usually fixed by frames
to restrict the relative sliding of skin layers. To analyze the influ-
ence of frames on the global behavior of the panel appropriate
boundary conditions are required.

2. Layer-wise theory

Fig. 2 shows a sketch of a rectangular three-layered plate. The
Cartesian base vectors i, i, n and the corresponding coordinates
X1, X and z are used to specify the position vectors in the reference
state. l; and I, designate the length and the width of the plate while
hr, hc, and hg denote the thicknesses of the top, core and bottom
layers, respectively. In what follows all quantities related to the
top, core and bottom layers, will be denoted by subscripts T, C,
and B, respectively. The origin for the z coordinate is placed in
the midplane of the core layer as shown in Fig. 2, such that
—hg — hc/2 <z < he/2 + hr. In this Section we present basic equa-
tions for the individual layers. They include the equilibrium condi-
tions, the constitutive equations, the compatibility conditions for
strains in layers and kinematical constraints between the layers.
Finally we make assumptions to simplify the governing equations.

Below we apply the direct tensor calculus in the sense of Gibbs
[25] and Lagally [26]. For basic rules of the direct tensor notation
one may also consult [27,28], among others. The Greek indices take
values 1 and 2 and the Einstein summation convention over re-
peated indices will be used.
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