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a b s t r a c t

This paper presents an improved finite element computational model using a flat four-node element with
smoothed strains for geometrically nonlinear analysis of composite plate/shell structures. The von-Kar-
man’s large deflection theory and the total Lagrangian approach are employed in the formulation of
the element to describe small strain geometric nonlinearity with large deformations using the first-order
shear deformation theory (FSDT). The element membrane-bending and geometric stiffness matrices are
evaluated by integration along the boundary of smoothing elements which can give more accurate
numerical integrations even with bad shape distortions. The predictive capability of the present model
is demonstrated by comparing the present results with analytical/experimental and other numerical
solutions available in the literature. Numerical examples show that the present formulations can prevent
loss of accuracy in distorted or coarse meshes, and therefore, are superior to those of other bilinear quad-
rilateral elements.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The extensive use of composite materials in various types of
plates and shells is of considerable interests to many researchers
in the field of developing simple and efficient plate/shell element
for geometrically nonlinear analysis of these structures. The accu-
rate prediction of structural response characteristics in the large
deformation regime therefore becomes more important consider-
ations of engineering design.

Geometrically nonlinear analysis is usually performed itera-
tively for each load increment with subsequent updating of coordi-
nates and internal stresses to obtain the equilibrium in the
deformed configuration. As a result, geometrically nonlinear anal-
ysis is considered as a complex issue that requires efficient and
reliable advanced numerical methods. Numerical methods such
as finite element methods have been developed and widely used
for nonlinear analysis of these structures with complex geometry
and loading history. There is a vast amount of literature on geo-
metrically nonlinear analysis of plates/shells which is impossible
to list all here. An excellent review of the development of plate/

shell finite elements during the past 20 years was presented by
Yang et al. [1]. Further extensive references on plates/shells can
be found in a detailed review of references [2,3]. Some recent latest
numerical methods have been also developed and achieved
remarkable progress in solving plate and shell problems including
linear analysis [4–6] and fracture analysis [7–13], for example.

As discussed in many references [14–19], flat elements have
been often and widely used owing to the ease to mix them with
other types of element, the simplicity in their formulation and
the effectiveness in performing computation. Consequently, flat
elements are advantageous in solving the geometrically nonlinear
problems in which the response of the structure at each increment/
iteration needs to be computed and stored with a large number of
history variables. A large number of flat four-node element formu-
lations have been presented to date, for example [20,21], showing
good performance. However, to the best authors’ knowledge, no
literature is available for geometrically nonlinear analysis of com-
posite plates/shells when meshes are coarse or elements are highly
distorted. Therefore, the present study is undertaken to address
this shortcoming.

The goal of this work is to further develop the flat element
MISQ20 (Mixed Interpolation Smoothing Quadrilateral element
with 20 DOF), whose performances in linear analysis have already
been verified and demonstrated in references [22,23], for
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geometrically nonlinear analysis of composite plate and shell
structures. The von-Karman’s large deflection theory and the total
Lagrangian (TL) approach are utilised in the small strain-large
deformation formulation and then the solution of the nonlinear
equilibrium equations is obtained by the arc-length method and
automatic incremental algorithm [24]. With the aid of the assumed
strain smoothing technique, the evaluations of the membrane,
bending and geometric stiffness matrices are obtained via integra-
tion on the boundary of smoothing cells. This boundary integration
contributes to the preservation of high accuracy of the method
when highly distorted elements or coarse meshes are used.
Numerical examples show that the present element is free from
locking and exhibits good accuracy and stability in capturing geo-
metric nonlinearity in composite plate/shell structures.

The remainder of the paper is outlined as follows. First, a brief
review of the FSDT finite element formulations for geometrically
nonlinear analysis is introduced in Section 2. The description of as-
sumed strain smoothing approaches for the generalised strains and
the tangent stiffness matrix of the element are derived in Section 3.
Several numerical applications are carried out in Section 4 in order
to verify and assess the performance of the proposed element. Fi-
nally, some concluding remarks are made in Section 5.

2. Finite element formulation for geometrically nonlinear
analysis

2.1. Kinematic equations

Based on the FSDT, the laminated composite plate kinematics is
governed by the midplane displacement u0; v0; w0 and the rota-
tion hx; hy of the normal to the mid-surface about y- and x-axis,
respectively [25]

uðx; y; zÞ ¼ u0ðx; yÞ þ zhx;

vðx; y; zÞ ¼ v0ðx; yÞ þ zhy;

wðx; y; zÞ ¼ w0ðx; yÞ:
ð1Þ

For large deformation analysis, the in-plane vector of Green-
Lagrangian strain at any point in a plate element is
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Substituting Eq. (1) into Eq. (2) and considering the von Kar-
man’s large deflection assumption, the in-plane strain vector can
be rewritten as

� ¼ �m þ z�b; ð3Þ

in which
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The nonlinear term of the membrane strain–displacement vec-
tor can be rewritten as follows
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in which h is termed the slope vector.
The transverse shear strain vector is given as

c ¼
cxz

cyz
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The constitutive relationship of laminated plates can be expressed
as

r� ¼ D���; ð9Þ

where
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and N ¼ ½Nx Ny Nxy� is the in-plane traction resultant, T ¼ ½Qx Qy� is
the out-of-plane traction resultant and M ¼ ½Mx My Mxy� is the out-
of-plane moment resultant. A is the extensional stiffness, D is the
bending stiffness, B is the bending-extension coupling stiffness
and Cs is the transverse shear stiffness, respectively defined as

ðAij;Bij;DijÞ ¼
Z h=2

�h=2
ð1; z; z2Þ�Q ij dz; i; j ¼ 1;2;6

Csij ¼
Z h=2

�h=2

�Qij dz; i; j ¼ 4;5

ð11Þ

where �Qij are the elastic constants with respect to the global x-axis
and their detailed definitions can be found in reference [25].

2.2. Total Lagrangian finite element formulation

Consider a bounded domain X ¼
Pne

i¼1Xi of a composite plate
which is discretized into ne finite elements. The finite element
solution u of a displacement-based 4-node quadrilateral model is
expressed as

u ¼

u
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where Ni is the bilinear shape function, qmi ¼ ½ui v i�T ,

qbi ¼ ½wi hxi hyi�T and qi ¼
qmi
qbi

	 

are the displacement vectors of

the element.
The total Lagrangian (TL) approach, in which the original config-

uration is taken as the reference, is usually used for geometrically
nonlinear analysis. The finite element equation in the TL approach
can be expressed in the following form

tKTDq ¼ tþDtP� tF; ð13Þ

where tF is the element internal force at time t; tþDtP is the element
external force at time t þ Dt, tKT is the element tangent stiffness
matrix at time t and Dq is the element displacement increment.

The element tangent stiffness matrix KT is defined as

KT ¼ KL þ KNL þ Kg ; ð14Þ

where KL represent the linear stiffness matrix, KNL denotes the non-
linear stiffness matrix and Kg is the geometric stiffness matrix.
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