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a b s t r a c t

In this paper, nonlinear free vibration of functionally graded (FG) nanobeams with immovable ends,
i.e. simply supported-simply supported (SS) and simply supported-clamped (SC), is studied using the
nonlocal elasticity within the frame work of Euler–Bernoulli beam theory with von kármán type nonlin-
earity. The material properties are assumed to change continuously through the thickness of the FG nano-
beam according to a power-law distribution. The analytical solution for the nonlinear natural frequency
is established using the method of multiple scale. The small scale effects on the linear/nonlinear nonlocal
frequency to the linear/nonlinear classical frequency ratios (the linear/nonlinear frequency ratios) are
examined for various parameters such as the FG nanobeam length, the FG nanobeam thickness to length
ratio (the thickness ratio), the vibration amplitude to the radius of gyration ratio (the amplitude ratio),
and the boundary condition. As a main result, it is observed that while the linear frequency ratios are
independent of the gradient index, the nonlinear frequency ratios vary with the gradient index.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Due to superior properties, nanostructures have attracted much
attention in the recent years. Multiple recent experimental results
have shown that as the size of the structures reduces to micro/
nanoscale, the influences of atomic forces and small scale play a
significant role in mechanical properties of these nanostructures
[1–3]. Thus, neglecting these effects in some cases may results in
completely incorrect solutions and hence wrong designs. The clas-
sical continuum theories do not include any internal length scale.
Consequently, these theories are expected to fail when the size of
the structure becomes comparable with the internal length scale.
Eringen nonlocal theory is one of the well-known continuum
mechanics theories [4–7] that includes small scale effects with
good accuracy to model micro/nanoscale devises. The nonlocal
elasticity theory assumes that the stress at a point is function of
the strain at all neighbor points of the body, hence, this theory
could take into account the effects of small scales.

In recent years, the studies of nanostructures using the nonlocal
elasticity theory have been an area of active research. Based on
this theory, Reddy [8] derived the equation of motion of various
kinds of beam theories available (Euler–Bernoulli, Timoshenko,
Reddy and Levinson) and reached analytical and numerical solu-
tions on static deflections, buckling loads, and natural frequencies.
Various nonlocal beam theories are used for bending, buckling,

post-buckling, linear transverse and longitudinal vibration, and
instability analyses of single- and multi- walled carbon nanotubes
(CNTs) [9–23]. Eltaher et al. [24] presented free vibration analysis
of functionally graded size-dependent nanobeams using finite ele-
ment method based on the Euler–Bernoulli beam theory. As appli-
cations of the nonlocal elasticity theory in nonlinear analysis,
Reddy [25] derived nonlocal nonlinear formulation for bending of
classical and shear deformation theories of beams and plates but
he did not present any numerical results. Yang et al. [26] and
Ke et al. [27] used nonlocal Timoshenko beam theory for nonlinear
free vibration analysis of single- and embedded double-walled car-
bon nanotubes, respectively. In similar works, Ghorbanpour et al.
[28] considered nonlinear vibration of embedded single-walled
boron nitride nanotubes (SWBNNTs) based on nonlocal
Timoshenko beam theory, and Ansari and Ramezannezhad [29]
investigated the large-amplitude vibrations of embedded multi-
walled carbon nanotubes including thermal effects using nonlocal
Timoshenko beam model. The effect of small scales on wave prop-
agation of single- and multi-walled carbon nanotubes was also
considered [30–38].

As seen, there is no study investigating the small scale effect on
nonlinear static and dynamic analyses of functionally graded
nanobeams, while it is necessary to be familiar with the mechani-
cal behavior of FG nanoscale structures for nano/micro-electro-
mechnaical systems (NEMS/MEMS) fabrication. The main
purpose of the present work is to propose a comprehensive analyt-
ical model to study the small scale effects on the nonlinear free
vibration of nanoscale FG Euler–Bernoulli beams with von kármán
type nonlinearity. To this end, the equation of motion is obtained
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and the analytical solution for nonlinear natural frequency is
established using the method of multiple scale. The small scale ef-
fects on the frequency ratios of FG nanobeams are examined for
various boundary conditions, nanobeam lengths, amplitude ratios,
and thickness ratios.

2. Formulation

Consider a FG nanobeam with length L (0 6 x 6 L), thickness h
(�0.5h 6 z 6 0.5h), and width b (�0.5b 6 y 6 0.5b). The FG nano-
beam is generally composed of two different materials at the top
and the bottom surfaces (as shown in Fig. 1). Poisson’s ratio m is as-
sumed to be constant, i.e. m = 0.3, whereas bulk elastic modulus E(z)
and mass density q(z) are assumed to vary in the thickness direc-
tion according to the power law distribution:

EðzÞ ¼ ðE1 � E2Þ
2zþ h

2h

� �m

þ E2 ð1Þ

qðzÞ ¼ ðq1 � q2Þ
2zþ h

2h

� �m

þ q2 ð2Þ

where the subscripts 1 and 2 denote the top surface and the bottom
surface, respectively, and a gradient index m determines the varia-
tion profile of material properties across the FG nanobeam thick-
ness. Upon the Euler–Bernoulli beam model, the displacement
field at any point of the nanobeam can be written as

uxðx; z; tÞ ¼ Uðx; tÞ � z
@Wðx; tÞ

@x
ð3Þ

uzðx; z; tÞ ¼Wðx; tÞ ð4Þ

where U(x,t) and W(x,t) are the displacement components of the
mid-plane at time t. In accordance, the von kármán type nonlinear
strain–displacement relationship is

exx ¼
@ux

@x
þ 1

2
@uz

@x

� �2

¼ @U
@x
� z

@2W
@x2 þ

1
2

@W
@x

� �2

ð5Þ

Now, using Hamilton’s principle, the nonlinear equations of motion
of the nanobeam can be derived as

@Nxx

@x
¼ I1

@2U
@t2 ð6Þ

@2Mxx

@x2 þ
@

@x
Nxx

@W
@x

� �
¼ I1

@2W
@t2 ð7Þ

where Nxx and Mxx are the local force and bending moment resul-
tants, respectively, and given by

Nxx ¼
Z

A
rxxdA ¼ bA1

@U
@x
þ 1

2
@W
@x

� �2
 !

� bB1
@2W
@x2

 !
ð8Þ

Mxx ¼
Z

A
zrxxdA ¼ bB1

@U
@x
þ 1

2
@W
@x

� �2
 !

� bC1
@2W
@x2

 !
ð9Þ

and parameters used in Eqs. (8) and (9) are defined as

fA1;B1;C1g ¼
Z þh=2

�h=2
EðzÞf1; z; z2gdz; I1 ¼

Z þh=2

�h=2
bqðzÞdz ð10Þ

Equations of motions, Eqs. (6) and (7), can be used in nonlocal form
as follows

@Nnl
xx

@x
¼ I1

@2U
@t2 ð11Þ

@2Mnl
xx

@x2 þ
@

@x
Nnl

xx
@W
@x

� �
¼ I1

@2W
@t2 ð12Þ

If the axial inertia is neglected, Eq. (11) gives

Nnl
xx ¼ N0 ¼ Constant ð13Þ

The nonlocal force and bending moment resultants can be obtained
by multiplying the left-hand side of Eqs. (8) and (9) by (1 � lr2)
[7], using Eqs. (11)–(13) and doing some mathematical manipula-
tion; and they are given by

Nnl
xx ¼ bA1

@U
@x
þ 1

2
@W
@x

� �2
 !

� bB1
@2W
@x2

 !
ð14Þ

Mnl
xx ¼ l �Nnl

xx
@2W
@x2 þ I1

@2W
@t2

 !
þ bB1

@U
@x
þ 1

2
@W
@x

� �2
 !

� bC1
@2W
@x2

 !
ð15Þ

In order to express the bending moment in terms of deflection, Eq.
(14) can be rewritten as follow

bB1
@U
@x
þ 1

2
@W
@x

� �2
 !

¼ B1

A1
Nnl

xx þ bB1
@2W
@x2

 ! !
ð16Þ

Substituting Eq. (16) into Eq. (15) leads to

Mnl
xx ¼ l �Nnl

xx
@2W
@x2 þ I1

@2W
@t2

 !
þ B1

A1
Nnl

xx þ bB1
@2W
@x2

 ! !

� bC1
@2W
@x2

 !
ð17Þ

For nanobeams with immovable ends (i.e. U and W = 0, at x = 0 and
L) and with Eq. (13) in mind, integrating Eq. (14) with respect to x
leads to

Nnl
xx ¼ N0 ¼

bA1

2L

Z L

0

@W
@x

� �2

dx� bB1

L

Z L

0

@2W
@x2

 !
dx ð18Þ

Finally, substitution of Eqs. (17) and (18) into Eq. (12) gives the
nonlocal nonlinear governing equation for the Euler–Bernoulli
functionally graded nanobeam as follows

ðPÞ @
4W
@x4 þ ðKÞ

@2W
@x2 � I1

@2W
@t2 þ lI1

@4W
@x2@t2 ¼ 0 ð19Þ

where

P ¼ bB2
1

A1
� bC1 � l bA1

2L

Z L

0

@W
@x

� �2

dxþ l bB1

L

Z L

0

@2W
@x2

 !
dx

K ¼ bA1

2L

Z L

0

@W
@x

� �2

dx� bB1

L

Z L

0

@2W
@x2

 !
dx

The nonlinear equation of motion of the conventional
Euler–Bernoulli FG beam [39] can be obtained from Eq. (19) by set-
ting l = 0.Fig. 1. Geometry of a FG nanobeam.
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