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a b s t r a c t

In the present investigation, a numerical analysis is conducted to predict size-dependent nonlinear free
vibration characteristics of third-order shear deformable microbeams made of functionally graded mate-
rials (FGMs). For this purpose, the modified strain gradient elasticity theory and von Karman geometric
nonlinearity are implemented into the classical third-order shear deformation beam theory to develop a
nonclassical higher-order beam model including three additional length scale parameters to capture size
effect efficiently. It is assumed that the material properties of the FGM microbeams are evaluated by the
Mori–Tanaka homogenization technique. On the basis of the Hamilton’s principle, the size-dependent
nonlinear governing differential equations of motion and associated boundary conditions are derived
and then discretized along various end supports by employing generalized differential quadrature
(GDQ) method. A direct iterative process corresponding to both positive and negative deflection cycles
is adopted. Secondly, a parametric study is performed to demonstrate the influences of the values of
dimensionless length scale parameter, material property gradient index and length to thickness aspect
ratio on the linear and nonlinear natural frequencies of FGM microbeams.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The rapidly developing nanotechnology leads to microbeams
have been widely used in Micro- and Nano-Electro-Mechanical
Systems (MEMS and NEMS) in which the thickness of beams is typ-
ically on the order of microns and sub-microns [1–4]. It has been
experimentally shown that for various materials such as metals,
polymers or functionally graded materials (FGMs), by closing the
thickness of structures to internal material length scale parameter,
microstructural effects exist which have essential influence on
mechanical properties and deformation characteristics [5–7].

The well-known classical continuum theories, which do not ac-
count for such size effects because of the lack of additional length
scale parameter, are inadequate to predict size-dependent
responses of microscale structures. Therefore, needs exist to
develop size-dependent models to estimate microstructural size
dependency of these structures. To this end, several nonclassical
higher-order continuum theories have been received increasing
attention in modeling small sized structures.

One of the size-dependent continuum theories is strain gradient
theory, introduced by Fleck and Hutchinson [8], which can be
named as an extension of the Mindlin’s theory [9]. After that, Lam
et al. [5] proposed a modified strain gradient elasticity theory in
which a new additional equilibrium equations to govern the char-
acteristics of higher-order stresses including three material length
scale parameters. In recent years, various studied have been con-
ducted to analyze size-dependent behaviors of microstructures.
For instance, Zhao et al. [10] analyzed the nonlinear static bending
deformation, the postbuckling problem and the nonlinear vibration
of Euler–Bernoulli microbeams based on the modified strain gradi-
ent elasticity theory. Recently, Zhang et al. [11] developed a novel
size-dependent FGM curved microbeams based on the modified
strain gradient theory and n shear deformation theory. Akgoz and
Civalek [12–14] employed strain gradient and modified couple
stress elasticity theories to study bending, buckling and free vibra-
tion of Euler–Bernoulli microbeams. More recently, nonlinear
forced vibrations of a microbeam employing the strain gradient
theory were investigated by Ghayesh et al. [15]. Mahammadi and
Mahzoon [16] studied thermal effects on postbuckling of nonlinear
microbeams using the modified strain gradient elasticity theory.
Ansari et al. [17] investigated the free vibration characteristics of
FGM microbeams based on strain gradient Timoshenko beam
theory. Also, Ansari et al. [18] studied bending, buckling and free
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vibration responses of FGM Timoshenko microbeams based on
strain gradient elasticity theory. The effect of small scale on the
nonlinear free vibration behavior of FGM Timoshenko microbeams
was predicted by Ansari et al. [19] on the basis of strain gradient
theory. Sahmani and Ansari [20] presented recently the prediction
of buckling behavior of size-dependent FGM third-order shear
deformable microbeams including thermal environment effect
using modified strain gradient elasticity theory.

Furthermore, size-dependent models for other types of FGM
microstructures such as microplates and microshells have been
developed. For example, Sahmani and Ansari [21] studied the free
vibration behavior of FGM higher-order shear deformable micro-
plates based on strain gradient theory. Recently, on the basis of
modified couple stress theory, Sahmani et al. [22] predicted dy-
namic stability response of FGM higher-order shear deformable
microshells.

The objective of the current study is to establish a nonlinear
third-order shear deformation microbeam model based on the
modified strain gradient elasticity theory. This developed nonclas-
sical beam model contains three additional material length scale
parameters to capture the microstructural effect. A simple power
law function is utilized to model the through-thickness variation
in the material properties of the FGM microbeams. By using
Hamilton’s principle, the nonlinear equations of motion together
with corresponding boundary conditions are derived. Afterward,

by employing generalized differential quadrature (GDQ) method,
the higher-order equations of motion are discretized along with
various types of end supports to calculate linear and nonlinear nat-
ural frequencies of FGM microbeams. A detailed parametric study
is presented to indicate the influences of length scale parameter,
gradient index and length to thickness aspect ratio on the nonlin-
ear vibration behavior of FGM third-order shear deformable
microbeams.

2. Homogenization of material properties

An initially straight FGM microbeam of length L between two
immovable supports and thickness h that is made from a mixture
of ceramics and metals is considered as sketched in Fig. 1. It is as-
sumed that the materials at bottom surface ðz ¼ �h=2Þ and top
surface ðz ¼ h=2Þ of the microbeam are ceramics and metals,
respectively. In the figure, the axial body force per unit length,
the transverse distributed force intensity per unit length and the
body couples imposed on the sections as couple per unit axial
length in the y-direction are denoted by Gðx; tÞ; Fðx; tÞ and Cðx; tÞ,
respectively. The local effective material properties of the FGM
microbeam can be calculated using homogenization method that
is based on the Mori–Tanaka scheme. On the basis of Mori–Tanaka
homogenization technique, the local effective bulk modulus Ke and
shear modulus le can be estimated as [23–25]

Fig. 1. Schematic of an FGM third-order shear deformable microbeam: kinematic parameters, coordinate system, geometry and loading.
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