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a b s t r a c t

Free vibration of two-dimensional functionally graded structures with an exponential material gradation
is analyzed in this paper by a meshfree boundary–domain integral equation method. Based on the
two-dimensional elasticity theory, boundary–domain integral equations are derived by using elastostatic
fundamental solutions. Due to the material inhomogeneity and inertial effect, two domain integrals
emerge in the boundary–domain integral equation formulation. Radial integration method is employed
to convert the domain integrals into boundary integrals. A meshfree scheme is achieved through
approximating the normalized displacements in the domain integrals by a combination of the radial basis
functions and the polynomials. Thus, the free vibration problem is reduced into a generalized eigenvalue
problem, which involves system matrices with boundary integrals only. By using the developed meshfree
boundary–domain integral equation method, free vibration of two-dimensional exponentially graded
beams and plates with various material gradients, gradation directions, boundary conditions and aspect
ratios is investigated, which demonstrates the high convergence, efficiency and accuracy of the present
method.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) belong to an advanced
class of composite materials. In order to optimize the material
properties, FGMs could be produced from completely different
constituent combinations that fit the required structural functions
with a high structural efficiency. Continuous gradation of material
properties reduce the residual stresses and stress concentrations
which are fatal defects existing in traditional composites. Besides,
FGMs bring extraordinary merits of high resistance to temperature
gradients, high wear resistance and an increase in strength to
weight ratio, which make the FGMs have extensive applications.
Example applications include the increased relevance of the FGM
structural components in the design of industry constructions,
aerospace structures, optoelectronics components and fusion
energy devices. Comprehensive reviews of FGMs research can be
found in the books by Suresh and Mortensen [1], Miyamoto [2]
and Robert et al. [3].

The superior properties of FGMs attract many research interests
of material scientists and structural designers. Studies on model-
ling the dynamic behaviours of FGM become more important in
engineering design procedures and free vibration analysis is the

first step on the way to explore vibration problems. A number of
researches about free vibration of FGMs structures like beams
and plates have been reported in the literature. Qian and Ching
[4] analyzed the static deformation, free and forced vibration of a
two-dimensional (2D) functionally graded cantilever beam by
using meshless local Petrov–Galerkin (MLPG) method. The mate-
rial properties of the beam change with a power-law variation pro-
portional to the volume fraction of the constituents in the
thickness and longitudinal directions. S�ims�ek and Kocatürk [5]
analyzed free vibration characteristics and the dynamic behaviour
of a simply-supported FG beam under a concentrated moving har-
monic load. The system of equations of motion is derived by using
Lagrange’s equations under the assumptions of the Euler–Bernoulli
beam theory. Both exponential and power laws are applied for the
material properties varying continuously in the thickness direc-
tion. Alshorbagy et al. [6] presented the dynamic characteristics
of a functionally graded beam with a material graduation in axial
or transversal (thickness) directions with power law function by
finite element method.

Zhao et al. [7] used the element-free kp-Ritz method and the
first order shear deformation plate theory to analyze the free
vibration of functionally graded plates. The material properties
are assumed to vary continuously through the thickness according
to a power law distribution of the volume fractions of the plate
constituents. Ferreira et al. [8] employed the global collocation
method, the first and the third-order shear deformation plate
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theories to analyze the free vibration of functionally graded plates.
The material properties were assumed to vary in the thickness
direction computed by the Mori–Tanaka homogenization tech-
nique. Liu et al. [9] investigated the free vibration of FGM plates
with an in-plane material inhomogeneity based on the classical
plate theory. A plate material gradation with a power-law along
one in-plane direction is considered. It is shown when the simpli-
fied structural theories are employed (i.e. plate theories), there is
no significant difference in the analysis between FGM plates and
the conventional laminated plates.

Analytical methods have been also applied for vibration analy-
sis of FGMs and structures. Aydogdu and Taskin [10] obtained the
analytical results of free vibration of simply supported FG beams
by using Hamilton’s principle in which Young’s modulus of the
beam varies in the thickness direction according to power and
exponential laws. Different higher order shear deformation theo-
ries and classical beam theories are used in the analysis. An analyt-
ical method for free vibration analysis of functionally graded beam
was investigated by Sina et al. [11]. The equations of motion of FG
beams are derived using a new beam theory and Hamilton’s prin-
ciple. The variation of the FG beam properties is assumed to have a
simple power law function of the volume fractions of the material
constituents of the beam. Li et al. [12] presented an analytic treat-
ment of the free vibration of axially exponentially graded beams
with various support conditions. The analytical solutions for FG
plates are quite rare in the literature. Vel and Batra [13] obtained
an exact solution for the vibration of simply supported rectangular
thick plates with material properties varying in the thickness
direction only. Based on the classical plate theory, an exact analyt-
ical solution for free vibration of thin FG rectangular plates was
presented by Baferani et al. [14].

Analytical solutions can be served as a benchmark for assessing
the accuracy and efficiency of various numerical and approximate
approaches. However, due to the mathematical complexity, most
practical problems of FGM structures can be solved only with
numerical schemes. Among many numerical methods, boundary
element method (BEM) or boundary integral equation method
(BIEM) with its superior efficiency and accuracy has been well
established as a powerful method for static and dynamic analysis
of FGMs and structures. Masataka et al. [15] solved the steady-
state heat conduction problems of FGMs by a dual reciprocity
boundary element method (DRBEM). Fracture analysis of FGMs
by a BEM was presented in [16,17]. Ruocco and Minutolo [18]
investigated two-dimensional stress analysis of multi-region func-
tionally graded materials using a field boundary element model.
Damanpack et al. [19] applied the BEM to the bending analysis of
functionally graded plates.

In the dynamic analyses of FGMs and structures by BEM, three
approaches are often used, namely, time domain method (TDM),
Laplace-transform method (LTM), and dual reciprocity method
(DRM) [20]. The fundamental solutions required in the TDM and
LTM have a complicated form, and the computational efficiency
of the method is therefore significantly reduced. In the DRM, the
equations of motion are expressed in a boundary integral form
using the fundamental solutions of elastostatics, which involves
domain integrals to take the inertial effects into account. The do-
main integrals are transformed into boundary integrals by the
DRM [21]. Since the fundamental solutions of elastostatics are time
independent, therefore only space integration is required. The DRM
requires particular solutions, whose construction is restricted to
the approximation function chosen. Another efficient alternative
technique to handle the domain integrals in BEM is the radial inte-
gration method (RIM) [22]. RIM is based on pure mathematical
treatments, and the main advantage over the DRM is that the radial
basis functions (RBF) can be freely chosen. The DRM and RIM have
been successfully implemented and applied to elastodynamic

problems in homogeneous and anisotropic materials [23,24]. A
meshless boundary–domain integral equation method for tran-
sient thermoelastic analysis has been developed and applied by
Ekhlakov et al. [25,26], where the Laplace-transform technique is
used and the domain integrals are handled by the RIM. In contrast
to the above mentioned investigations, few works can be found in
literature for the elastodynamic problems of FGM structures by
using these methods.

In this paper a meshfree boundary–domain integral equation
method is presented to analyze the free vibration behaviours of
2D FGM structures. The material properties are assumed to vary
continuously according to the exponential law either in thickness
or longitudinal directions. The boundary–domain integral equa-
tions are derived based on 2D elasticity theory, while the elasto-
static fundamental solutions for isotropic and homogeneous
materials are applied. Radial integration method is applied to con-
vert the two domain integrals emerged in the boundary–domain
integral equations due to the material inhomogeneity and inertial
effect into the boundary integrals. A meshfree scheme is achieved
by approximating the normalized displacements in the domain
integrals by a combination of the radial basis function and polyno-
mials in term of global coordinates. Internal nodes are necessary to
increase the accuracy of the solution due to the fact that the correct
functional approximation requires a rather uniform distribution of
nodal points. Then the eigenvalue and eigenvector can be obtained
by solving the generalized eigensystem with only boundary dis-
cretization and internal nodes. The present method keeps the
dimensionality reduction advantage of the classical BEM and use
simple elastostatic fundamental solutions. Numerical examples
demonstrate its high efficiency and accuracy.

2. Exponential material properties

In this paper, the material properties of the FGM structures are
assumed to vary continuously along spatial coordinates in longitu-
dinal or thickness directions according to the exponential law. In
practice, the Poisson’s ratio m is usually taken as constant since it
commonly varies only slightly within the material and this
assumption was used often [27]. The Young’s modulus E and the
mass density q are assumed to vary according to the following
exponential functions [28]

EðxdÞ ¼ E0ebxd ; where b ¼ 1
Ld

ln
E1

E0

� �
; ð1Þ

qðxdÞ ¼ q0ecxd ; where c ¼ 1
Ld

ln
q1

q0

� �
; ð2Þ

where E0 and q0 denote the Young’s modulus and mass density for
the starting face constituent, E1 and q1 are for the ending face con-
stituent, b and c represent the material gradient parameters for
Young’s modulus and mass density respectively, xd stands for the
Cartesian coordinate system, and Ld is length parameter (d = 1, 2)
of the considered structure. An example for the variation of the
exponential material properties in spatial direction as E(xd) is
shown in Fig. 1, where j = E1/E0.

3. Problem formulation

Based on 2D elasticity theory, the governing equations of mo-
tion are given by

rij;jðx; tÞ ¼ q€uiðx; tÞ; ð3Þ

where q is the mass density, ui is the displacement vector,
€ui ¼ @2uiðx; tÞ=@t2 is the acceleration, and rij is the stress tensor. A
comma after a quantity represents spatial derivatives and repeated
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