
Nonlinear resonance behavior of functionally graded cylindrical shells in
thermal environments

Changcheng Du ⇑, Yinghui Li
School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China

a r t i c l e i n f o

Article history:
Available online 14 March 2013

Keywords:
FGM
Cylindrical shells
Thermal effects
Nonlinear vibration
Multiple scale method

a b s t r a c t

This paper deals with the nonlinear vibrations of functionally graded cylindrical shells in thermal envi-
ronments. The equivalent properties of functionally graded materials are described as a power-law dis-
tribution in the thickness direction and are considered to be temperature-dependent. A typical case with
a primary resonance excitation and a 1:2 internal resonance between two modes is analyzed. The energy
approach and the Lagrangian formulation are employed to derive the reduced low-dimensional nonlinear
ordinary differential equations of motion based on Donnell’s nonlinear shell theory. The dynamic behav-
iors of system are investigated by means of the so-called multiple scale method. The amplitude–
frequency curves and the bifurcation behavior of the system are analyzed using numerical continuation
method. The effects of temperature and volume fractions of constituent material on the amplitude
response of the system are fully discussed.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

By gradual changing the volume fraction of constituent materi-
als through special directions, the material properties of function-
ally graded materials (FGM) are smoothly variational along one or
more directions and can response to externally applied loading in
optimum way [1]. Such advantages induce FGMs attract intensive
attention in a wide range of research subjects. During the past one
and a half decades, numerous reports on the studies of vibrations
or dynamic response of functionally grade (FG) structures have
been published (e.g., Refs. [2–9]). To characterize the gradient ef-
fects of FGMs as precise as possible, many researchers developed
higher order shear deformation theory to modify the classic plate
or shell theory. Yang and Shen [4], Huang and Shen [5] studied
the free vibration and dynamic response of FG cylindrical panels
and plates based on a higher order shear deformation shell and
plate theory respectively. Patel et al. [7] analyzed the free vibration
of FG elliptical cylindrical shells with higher order theory. The oth-
ers who consider the shear deformation in the study of vibration of
FG structures include Chen [6], Matsunaga [8,10,11], Talha and
Singh [9], Hosseini-Hashemi et al. [12], Zhao and Liew [13]. On
the other hand, some researchers try to investigate the dynamic
problems of FG structures directly based on three dimensional
(3D) theory of elasticity. Malekzadeh [14] analyzed 3D free vibra-
tion of FG plates resting on an elastic medium, Malekzadeh and

co-workers [15,16] also studied 3D free vibration of FG thick annu-
lar plates and truncated conical shells respectively. Li et al. [17]
gave a solution for the free vibration of FG rectangular plates with
simply supported and clamped edges according to 3D linear theory
of elasticity. Vel [18] presented an exact elastic solution for the
vibration of FG anisotropic cylindrical shells based on the 3D linear
elastodynamics. Asgari and Akhlaghi [19] presented a natural fre-
quency analysis of thick hollow cylinders made of two dimensional
FGM according to 3D equations of elasticity. Meanwhile, many
solution methods are developed to treat FG structures. Pradyumna
and Bandyopadhyay [20] proposed a higher-order finite element
formulation to analyze the free vibration of FG curved panels; Tal-
ha and Singh [9], Natarajan et al. [21], Behjat and Khoshravan [22]
also applied finite element method (FEM) to study the free vibra-
tion of FG plates. Analytical approach [5,23,24] and differential
quadrature method (DQM) [12,25–28] are also used in vibration
analysis of FG plates or shells.

Since FGMs are developed primarily for use in high temperature
environments, thermal effects on the dynamic response of FG
structures are always significant aspects. Huang and Shen [5] re-
vealed the temperature field has significant effect on the nonlinear
vibration and dynamic response of FG plates by taking both heat
conduction and temperature-dependent material properties into
account. Yang and Shen [25] studied free and forced vibration of
FG plates in thermal environments. Malekzadeh and co-workers
[15,16] investigated 3D free vibration of FG annular plates and
truncated conical shells in thermal environments; they also pre-
sented a solution for temperature-dependent free vibration of FG
rotating cylindrical shells [29].
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Recently, some researchers treated the nonlinear dynamic
behaviors of FG plates and shells, such as bifurcation, mode inter-
action, and chaotic motion. Alijani et al. [30] analyzed the nonlin-
ear forced vibration of FG doubly-curved shallow shells, the
primary and subharmonic resonance responses of FG shallow
shells were fully discussed; bifurcation diagrams and the Poincaré
maps were obtained, and chaotic regions were illustrated. They
further discussed the thermal effects of temperature on the nonlin-
ear vibrations of FG doubly curved shells [31]. Alijani and co-work-
ers [32] also investigated the nonlinear vibrations of FG plates in
thermal environment, and revealed significant effect of tempera-
ture on the vibration of FG plates. Hao et al. [33] analyzed nonlin-
ear dynamic behaviors of cantilever FG rectangular plates in
thermal environment, and numerical results showed that cantile-
ver FG rectangular plates may occur periodic, quasi-periodic and
chaotic motion in some given conditions.

This work deals with the nonlinear forced vibration of infinitely
long FG cylindrical thin shells with thermal effects. The properties
of FGM are assumed to be temperature-dependent and graded in
the thickness direction according to a simple power-law distribu-
tion in terms of the volume fractions of constituents. The Donnell’s
nonlinear shell theory and the Lagrangian formulation are em-
ployed to derive the reduced low-dimensional nonlinear ordinary
differential equations of motion of system. The multiple scale
method is applied to analyze the nonlinear resonance behaviors
of the shell. The effects of temperature and power-law exponent
on the amplitude response of the system are fully investigated.

2. Basic equations

2.1. Equations of motion

Consider a FG cylindrical thin shell with mid-surface radius R
and thickness h. A reference frame of cylindrical coordinates
(x,h,z) is set up at the middle surface, where x is longitudinal, h cir-
cumferential, z normal (positive outwards). The deformations of
mid-surface defined in the reference frame are u, v, and w in the
x, h, and z directions, respectively.

Assume that the temperature is uniform across the thickness
and can be expressed as T = T0 + DT, where T0 = 300 K is the initial
temperature, and DT the temperature rise. The constituent materi-
als of FG cylindrical shells are assumed to be metal and ceramic;
and their properties P (Young’s modulus E, Poisson’s ratio m, mass
density q and thermal expansion coefficient aT) are considered as
temperature-dependent [2]:

PðTÞ ¼ P0 P�1T�1 þ 1þ P1T þ P2T2 þ P3T3
� �

ð1Þ

The material properties P of FGM are supposed to be graded in
thickness direction and are expressed as functions of z-coordinate
in terms of a power-law distribution [2]:

Pðz; TÞ ¼ ½PmðTÞ � PcðTÞ�
2zþ h

2h

� �N

þ PcðTÞ ð2Þ

where the subscripts m and c represent metal and ceramic, respec-
tively; the superscript N is power-law exponent, N 2 [0,1), reflect-

ing the volume fraction of metal. According to Eq. (2), the material
of inner surface (z = �h/2) is ceramic, and the outer surface (z = h/2)
is metal. The temperature dependent material properties of metal
and ceramic are shown in Table 1.

Here, we introduce some material moduli which will be used in
following analysis:
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Based on the Donnell’s nonlinear shell theory, the stain-displacement
relations defined in the cylindrical coordinate frame can be written
as [34]:

ex ¼ e0
x þ zjx; eh ¼ e0

h þ zjh; cxh ¼ c0
xh þ zjxh ð5Þ

where ex and eh are strain components along x and h direction,
respectively, cxh is shear strain in xh plane. e0

x ; e0
h and c0

xh are the
membrane strains, defined as: e0

x ¼ u;x þw;xx=2; e0
h ¼

ðv ;h þwÞ=Rþ ðw;hÞ2=2R2; c0
xh ¼ v ;x þ u;h=Rþw;xw;h=R; while jx, jh

and jxh are the curvatures, given by: jx = �w,xx, jh = �w,hh/R2 and
jxh = �2w,xh/R, where a comma denotes differentiation with respect
to x or/and h variables.

We analyze an infinitely long cylindrical shell, which is unre-
stricted under any environment temperature. So the constitutive
equation does not include explicitly the temperature term, and
then the membrane force resultants can be written as

Nx ¼ D�0e
0
x þ D�0e

0
h þ D�1jx þ D�1jh

Nh ¼ D�0e
0
x þ D�0e

0
h þ D�1jx þ D�1jh

2Nxh ¼ D�0 � D�0
� �

c0
xh þ D�1 � D�1

� �
jxh

ð6Þ

Reversing Eq. (6), the membrane strains can be expressed as func-
tions of membrane force resultants and curvatures

Table 1
The temperature-dependent properties of metal and ceramic.

Material Properties P�1 P0 P1 P2 P3 P (T = 300 K)

SUS304 (metal) E (Pa) 0 201.04e9 3.079e�4 �6.534e�7 0 1207.7877e9
m 0 0.3262 �2.002e�4 3.797e�7 0 0.31776
q (kg/m3) 0 8166 0 0 0 8166

Si3N4 (ceramic) E (Pa) 0 348.43e9 �3.07e�4 2.160e�7 �8.946e�11 322.2715e9
m 0 0.24 0 0 0 0.24000
q (kg/m3) 0 2370 0 0 0 2370
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