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The Hierarchical Trigonometric Ritz Formulation (HTRF) has earlier been successfully developed for
plates [1-4] and shells [5] using the Principle of Virtual Displacements (PVD). In this paper the HTRF is
significantly extended with the help of Reissner’s Mixed Variational Theorem (RMVT) so as to deal with
the free vibrations of doubly-curved anisotropic laminated composite shells. The interlaminar equilib-
rium of the transverse normal and shear stresses is fulfilled a priori by exploiting the use of Lagrange
multipliers. The transverse normal and shear stresses thus become primary variables within the formu-
lation and are always modeled with a Layer-Wise kinematics description. Equivalent Single Layer, Zig-Zag
and Layer-Wise approaches are instead efficiently used for the displacement primary variables. Appropri-
ate expansion orders for each displacement or stress unknown are selected depending on the required
accuracy and the computational cost. Axiomatic/asymptotic shell theories are then developed by virtue
of a deep study on the effectiveness of each term both in the displacements and in the transverse stresses
fields. Next exact and/or accurately approximated curvature descriptions are taken into account. Cylin-
drical, spherical and hyperbolic paraboloidal shells are investigated. The proposed advanced quasi-3D

shell models are assessed by comparison with 3D elasticity solutions.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A significant part of aerospace structures is generally made up of
thin-walled cylindrical or spherical shell components. Such appli-
cation is justified because of the extraordinary load-carrying capa-
bility of shell structures. Furthermore, their structural efficiency is
characterized by a high stiffness-to-weight and strength-to-weight
ratios. Clearly cylindrical and spherical panels widely used in the
latest aerospace applications require a deep and comprehensive
investigation for their dynamic behavior. The majority of the shell
theories which have been used in the last decades are inadequate
to successfully address this task and the use of advanced shell mod-
els is needed. Tracing-back the history of the shell theories, accord-
ing to Novozhivol [6] the first known effort properly channeled to
shell theory was given by Aron [7], who essentially tried, for the
first time, to extend Kirchhoff’s hypotheses, valid for flat plates, to
shell structures. Despite the pioneering attempt his development
was not strictly correct and some inaccuracies were rectified by
Love [8,9]. Nevertheless even the development of the theory
proposed by Love [8,9] was featured by some mathematical
inconsistencies dwelling in the fact that some small terms were
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retained whereas some others of the same order of magnitude were
discarded. The first set of Governing Differential Equations (GDEs)
completely elucidated and free from inconsistencies were provided
by Lur'e [10]. Gol'denveizer [11], for the first time, provided the
compatibility conditions of strains for shells starting from the
Gauss-Codazzi conditions. In his work, Gol'denveizer introduced
pioneering insight into the possibility of identically satisfying the
GDEs, written in terms of forces and moments, by virtue of stress
functions. Contemporaneously and in a completely independent
manner from Gol’denveizer [11], Lur'e [10] provided a similar solu-
tion. More specifically both authors, considering a shell loaded only
at the edge, proved that the GDEs made up of ten unknowns includ-
ing forces and moments could have been expressed in terms of only
four arbitrary stress functions. This solution was somehow an
extension to shell structures of the solution provided by Airy [12]
in the plane theory of elasticity. Afterwards, Novozhilov [6], by set-
ting the Poison’s ratio to zero, provided several complex forms of
the GDEs written in a compact and concise manner, showing that
the advantages of this new formulation lie in the simplification of
their solution. A deeper understanding of the usefulness of the
application of the complex transformations was given by Mushtari
[13,14]. Subsequently, in order to provide solutions of the GDEs of
practical interest, considerable efforts were focused and devoted
to their simplification. As a result, the GDEs of shallow shells were
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derived. In this regard, it worths highlighting the articles of Donnell
[15,16], Mushtari [13,14]| and Vlasov [17,18]. Most notably, the
turning point was given by Donnell [15], who wrote: “Much confu-
sion seems to exist as to what simplification can be made, and the con-
dition under which they can be made. One author consider items which
another reject and vice versa. An attempt is made, in the following dis-
cussion, to clarify this question and to obtain the greatest simplification
possible, under the condition of the present problem; the results are
applicable to a large class of problems”. His efforts led to the theory
universally adopted for the investigation of shallow shell struc-
tures. Afterwards, independently each other, Fliigge [19,20], Lur’e
[10] and Byrne [21] developed a theory discarding the hypothesis
of thinness considering higher order expansion of the reciprocal
of the Lamé parameters. Other refinements of the developed shell
theories were proposed by Sanders [22]. Additional effects in the
development of shell theories were taken into account by Whitney
and Sun [23], Librescu [24], Gulati and Essemberg [25], Zucas and
Vinson [26] and Ambartsumian [27-34] amongst others. Additional
references can be found in Naghdi [35], Ambartsumian [36] and
Bert [37-39]. Reddy [40] proposed a generalization of Sander’s the-
ory to anisotropic doubly-curved shells. The application of Layer-
Wise theories for shell structures can be found in the papers pre-
sented by Hsu and Wang [41], Cheung and Wu [42], Barbero et al.
[43] and Carrera [44-46]. Reviews on finite element shell formula-
tions have been given by Denis and Palazzotto [47] and Di and
Ramm [48]. Exhaustive reviews on classical theories can be found
in Librescu [24]. As regards the use of approximation methods, Qatu
and Asadi [49] addressed the vibration analysis of doubly-curved
shallow shells with arbitrary boundary conditions by using the Ritz
method with algebraic polynomial displacement functions. Asadi
et al. [50] employed a 3D and several shear deformation theories
in order to carry out static and vibration analysis of thick deep lam-
inated cylindrical shells. Ferreira et al. [51] used a wavelet colloca-
tion method for the analysis of laminated shells. The same author
[52] combined a sinusoidal shear deformation theory with the ra-
dial basis functions collocation method to deal with static and
vibration analyzes of laminated composite shells. Tornabene et al.
[53,54] studied the free vibration behavior of doubly-curved aniso-
tropic laminated composite shells and revolution panels by means
of the Generalized Differential Quadrature (GDQ). Nevertheless the
majority of the papers touched upon hitherto do not describe com-
pletely what have been referred to as C-requirements by Carrera
[55]. Most notably, due to the high transverse shear deformability
of composite structures usually in their advanced modeling conti-
nuity of both displacements and transverse stresses is required.
With shell models based on the use of the Principle of Virtual Dis-
placements (PVD) the C’-requirements are not fulfilled because it
does not account for the interlaminar continuity (IC) of the trans-
verse stresses. To completely overcome this drawback, Reissner’s
Mixed Variational Theorem (RMVT) [56-60] is invoked in this paper
in the derivation of both weak and strong forms of the governing
equations. By means of RMVT the IC is fulfilled a priori by exploiting
the use of the Langrange multipliers which allow to variationally
enforce the compatibility of the transverse shear and normal
strains. Moreover due to the strong transverse anisotropy showed
by composite structures, advanced shell models must include the
Zig-Zag (ZZ) trend of the displacement components through the
thickness direction. Theories regarding the fulfillment of the C-
requirements were reviewed by Grigolyuk and Kulikov [61]. Within
the framework of static and dynamic analysis of composite shell
structures the application of asymptotic methods must not be
underrated and in particular the works of Fettahlioglu and Steel
[62], Widera and Logan [63], Widera and Fan [64], Spencer et al.
[65] and Cicala [66] worth to be highlighted. A complete overview
of different problems related to multilayered shells modeling has
been provided by Kapania [67] and Noor and Burton [68]. The first

purpose of the present paper is to evaluate the effectiveness of the
higher order terms for both displacements and transverse stresses
fields. This procedure leads to the so-called axiomatic/asymptotic
theories. The mathematical formulation which permits the applica-
tion of this new modern approach in the dynamic analysis of ad-
vanced structures, essentially based on the combination of
Lagrangian mechanics and advanced variational principles, is the
Carrera Unified Formulation (CUF) [69-71] which is extensively
used in the present paper. In particular, the first author has devel-
oped a Matlab code which includes the PVD/RMVT-based HTRF
with the capability to generate axiomatic/asymptotic theories
within the framework of the CUF. It is worth underscoring that
the PVD/RMVT-based HTRF is generated by the combination of
the CUF, the trigonometric Ritz method and the PVD or RMVT var-
iational statements. The second purpose is to clarify some existing
doubts and controversial questions on the dichotomy between the
use of exact (or accurately approximated) curvature terms or higher
order Equivalent Single Layer (ESL), ZZ and Layer-Wise (LW) shell
theories in the analysis of doubly-curved shell structures. Results
are presented in terms of natural frequencies, the effects of stacking
sequence, length-to-thickness ratio, radius-to-length and radius-
to-thickness ratios are analyzed. Several curvature approximations
are tested towards the exact one. Finally some conclusions are
drawn from the findings of the research.

2. Laminated composite shell geometries

The shell geometries investigated in this paper are shown in
Fig. 1 and the parameters used to describe each shell geometry
are depicted in Fig. 2. The generic laminated shell is composed of
N layers. Subscripts and superscripts k refer to the layer number
which starts from the bottom of the shell. The layer geometry is
denoted by the same symbols as those used for the whole multilay-
ered shell and vice versa. With «, and gy the curvilinear orthogonal
coordinates (coinciding with the lines of principal curvature) on
the layer reference surface ©, (middle surface of the k layer) are
indicated. The z, denotes the rectilinear coordinate in the normal
direction with respect to the layer middle surface €. The I'y is
the Q boundary: I'f and I'y’ are those parts of I'y on which the
geometrical and mechanical boundary conditions are imposed,
respectively. These boundaries are herein considered parallel to
o or Bi. For convenience the dimensionless thickness coordinate
Lo = % (hi denotes the thickness in A, domain) is introduced. Most
notably, in Fig. 2, (o, p) indicates the position vector of a point on
the middle surface 2 of the shell, R(a, S, z) is the position vector of
a generic point within the volume occupied by the shell. At each
point P of the middle surface n(«, ) indicates the unit normal vec-
tor. The following relationships hold in the given orthogonal sys-
tem of curvilinear coordinates [44,45]:

1. Square of line elements

2 2 2
ds; = (Hy)" dof + (H})" df + (H:) dz (1)
2. Area of an infinitesimal rectangle on Qy
dQy = Hj, Hﬁ doy dpy (2)
3. Infinitesimal volume
dvy = Hj Hﬁ HY doy, dp, dz; 3)
where
Zk k Zk
HE = A <1+F> Hf =B <1+—k> HE=1 (4)
o B
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