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a b s t r a c t

Geometrically nonlinear free vibration analysis of shear deformable anisotropic laminated composite
beams resting on a two-parameter elastic foundation is presented. The material of each layer of the beam
is assumed to be linearly elastic and fiber-reinforced. A new nonlinear beam model involving the exact
expression of bending curvature is introduced, and the nonlinear vibration analysis with exact nonlinear
characteristics of the work done by axial loading is accordingly performed. The governing equations are
based on higher order shear deformation beam theory with a von Kármán-type of kinematic nonlinearity
and including the bending–stretching, bending–twisting, and stretching–twisting couplings. Two kinds of
end conditions, namely movable and immovable, are considered, and a perturbation technique is
employed to determine the linear and nonlinear frequencies of a composite beam with or without initial
stresses. The frequency response of laminated beams with different geometric and material parameters,
end conditions and effect on elastic foundation is numerically illustrated. The results reveal that the geo-
metric and physical properties, end conditions, and elastic foundation effect have a significant influence
on large amplitude vibration behavior of anisotropic laminated composite beams.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Composite beam structures are widely used in various engi-
neering applications (e.g., airplane wings, helicopter blades as well
as many others in the aerospace, mechanical, and civil industries).
Anisotropic composites provide more design flexibility than con-
ventional materials. Due to the outstanding engineering properties,
such as high strength/stiffness to weight ratios, the laminated
composite beams are likely to play a remarkable role in design of
various engineering type structures and partially replace the con-
ventional isotropic beam structures. However, their increased
amount of design parameters brings some difficulties in structural
analysis. One of the important problems in engineering structures
is the vibration analysis of composite beams.

A number of useful elastic beams, plates and shells theories
have been proposed for the analysis of composite structures
[1–10] due to the rapid increasing use of advanced composite
materials in various industries. The practical importance and po-
tential benefits of the composite beams have inspired continuing
research interest. A series of research work in the vibration analy-
sis of composite beams have been conducted in the past decades.
Excellent overviews of these types of models may be found in Kap-

ania and Raciti [11], Rose [12], and Hajianmaleki and Qatu [13].
Many analytical and computational methods including, but being
not limited to, the closed-form solution [14–20], dynamic stiffness
method [21–30], differential quadrature method (DQM) [31–38],
finite element method (FEM) [39–42] and finite difference method
[43–45], have been developed to deal with linear and nonlinear
vibrations of laminated beams. Linear free vibration analysis of
composite beams on an elastic foundation has received a good
amount of attention in the literature [14–18,21–31,34–37,39–
48]; however, relatively few studies have been devoted for nonlin-
ear vibration aspects of such beams [19,20,32,33,38,49]. Further-
more, Aydogdu [50,51], Wu and Chen [52] and Qu et al. [53]
presented and compared a lot of free vibration results for lami-
nated beams using some of shear deformation-based theories,
and the results showed that the natural frequencies obtained from
different higher order theories in predicting the free vibration of
laminated beams become unremarkable. It should be given more
attention to the elastic coupling of the bending–stretching, bend-
ing–twisting and stretching–twisting resulted from the anisotropic
nature of material. On the other hand, the laminated beams often
undergo large amplitude vibrations when they are subjected to
severe dynamic loading, and the nonlinear free vibration analysis
of composite beams have aroused interest of researchers.
Ganapathi et al. [54] presented the large amplitude free vibration
analysis of cross-ply laminated straight and curved beams using
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the spline element method. Singh et al. [55] studied the large-
amplitude free vibrations of unsymmetrically laminated beam
using von-Kármán large deflection theory using one-dimensional
finite elements based on classical lamination theory, first-order
shear-deformation theory, and higher-order shear-deformation
theory. Patel et al. [56] studied free vibration and post-buckling
analysis of laminated orthotropic beams resting on a two parame-
ters elastic foundation (Pasternak type) using a three-node shear
flexible beam element. Recently, Gunda et al. [19] investigated
large amplitude vibration analysis of laminated composite beam
with axially immovable ends with symmetric and asymmetric lay-
up orientations by using the Rayleigh–Ritz (R–R) method. They
solved and evaluated the nonlinear governing equation for the
large amplitude vibration of the composite beam with the nonlin-
ear finite element formulation. In fact, in spite of the availability of
finite element method and powerful computer programs, the sec-
ond- or higher-order analysis of a composite beam is still an
impractical task to most structural designers due to the limitation
of the number of degrees of freedom (DOFs) required to achieve a
desired level of precision and efficiency. To the authors’ best
knowledge there is no work available in the literature on the large
amplitude free flexural vibration analysis of shear deformable
anisotropic laminated composite beams with or without initial
stress on two-parameter nonlinear elastic foundation using the
two-step perturbation method.

For nonlinear analysis of beams, the key issue is how to conduct
the nonlinear model in the governing equations. In fact, the beam
is assumed to undergo moderate rotations and only the nonlinear
terms resulting from the development, up to a maximum of the
third order, of generalized strains in terms of the beam cross-sec-
tion rotation are retained. There are two approaches used in the
previous studies. In the first approach, the nonlinear model is
based on the exact expression of curvature @h

@X (his the slope of
the deflected beam); while in the second approach, the linear
expression of curvature @2W

@X2 remains and the von Kármán-type
strain–displacement relation of the beam in the longitudinal direc-
tion is introduced. The major difference between these two ap-
proaches lies in that the nonlinear term in the second approach
depends on the extensional rigidity and it does not appear in the
beam large amplitude vibrations. However, different from that of
plate and shell structures, the high order term of the exact expres-
sion of curvature, when compared to that of the axial strain–dis-
placement relation of the beams, may play a much more
significant role in geometrically nonlinear analysis of beams.
Although the above described approaches were successful in pre-
dicting the linear frequencies in a variety of beams with various
end conditions and for situations where geometrically nonlinear
effects were important, the approaches can become complex and
perhaps difficult to study nonlinear vibration of a beam due to geo-
metrically nonlinear effect, which requires an exact analysis of the
curvature. When deriving beam models for the moderate rota-
tional range of deformation, special attention has to be given to
the truncation order as well as the used physical assumptions.
On the other hand, the sufficient higher order terms are needed
to investigate the beam deformation range of moderate rotations
as the order of truncations of strains strongly affects the results.

The present work thus focuses on nonlinear free vibration
behavior of anisotropic laminated composite beams resting on
two-parameter (Pasternak-type or Vlasov-type) elastic founda-
tions. The governing equations by applying Hamilton’s principle
are based on the higher order shear deformation beam theory with
a von Kármán-type of kinematic nonlinearity including beam-
foundation interaction and introducing an exact bending curvature
model (the work V done by the axial loading of laminated compos-
ite beam is exactly expressed and adopted in the present nonlinear
analysis). For nonlinear vibration problems, two kinds of the end

boundary conditions, i.e., movable and immovable, are considered.
The analysis uses a two-step perturbation technique to determine
the nonlinear frequencies of a beam with or without initial stres-
ses. The numerical illustrations concern the nonlinear vibration
behavior of anisotropic laminated composite beams with different
types of geometric parameters and ply arrangements (layups) of
shear deformable anisotropic laminated composite beams.

2. Theoretical development

Consider a laminated composite beam with width b, length L
and thickness h, which consists of N plies of any kind. The beam
resting on a two-parameter elastic foundation is assumed to be rel-
atively thick, and is subjected to the axial compressive loading P.
The axial and transverse displacement fields are expressed as

U1ðX;Y; Z; tÞ ¼ UðX; tÞ þ ZWðX; tÞ � c1Z3 Wþ @W
@X

 !
ð1aÞ

U2ðX;Y; Z; tÞ ¼ 0 ð1bÞ
U3ðX;Y; Z; tÞ ¼WðX; tÞ ð1cÞ

where U1and U3 are the displacements in X- and Z-directions at any
material point in the (X,Z) plane, respectively. U and W are the
longitudinal and transverse displacements along the beam
reference plane (X,Y), and W is the rotation of the normal to the
cross-section about Y-axis at the reference plane. The bending

curvature is modified to the form of @2W
@X2 1� @W

@X

� �2
� ��1=2

to replace

@2W
@X2 . Z is the depth of the material point measured from the beam

reference plane along the positive Z-axis. The strains can be written
as
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The laminated plate constitutive equations based on the higher-or-
der shear deformation theory can be expressed as

NX

NY

NXY

MX

MY

MXY

PX

PY

PXY

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

¼

A11 A12 A16 B11 B12 B16 E11 E12 E16

A12 A22 A26 B12 B22 B26 E12 E22 E26

A16 A26 A66 B16 B26 B66 E16 E26 E66

B11 B12 B16 D11 D12 D16 F11 F12 F16

B12 B22 B26 D12 D22 D26 F12 F22 F26

B16 B26 B66 D16 D26 D66 F16 F26 F66

E11 E12 E16 F11 F12 F16 H11 H12 H16

E12 E22 E26 F12 F22 F26 H12 H22 H26

E16 E26 E66 F16 F26 F66 H16 H26 H66

2
66666666666666664

3
77777777777777775

eð0ÞX

eð0ÞY

cð0ÞXY

eð1ÞX

eð1ÞY

cð1ÞXY

eð3ÞX

eð3ÞY

cð3ÞXY

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

ð5Þ

where NX and MX are the stretching force resultant and bending
moment resultant, respectively; PX represents the high-order bend-
ing moment resultant. Imposing the traction boundary conditions
at the top and bottom free-surfaces (Z = ±h/2), the transverse shear
stress will vanish, i.e., sZX = 0, and the coefficient c1 in the displace-
ment field Eq. (1a) is c1 = 4/3h2.
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