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a b s t r a c t

This paper presents a new 2-D wavelet spectral finite element (WSFE) model for studying wave propa-
gation in thin to moderately thick anisotropic composite laminates. The WSFE formulation is based on
the first order shear deformation theory (FSDT) which yields accurate results for wave motion at high fre-
quencies. The wave equations are reduced to ordinary differential equations (ODEs) using Daubechies
compactly supported, orthonormal, scaling functions for approximations in time and one spatial dimen-
sion. The ODEs are decoupled through an eigenvalue analysis and then solved exactly to obtain the shape
functions used in element formulation. The developed spectral element captures the exact inertial distri-
bution, hence a single element is sufficient to model a laminate of any dimension in the absence of dis-
continuities. The 2-D WSFE model is highly efficient computationally and provides a direct relationship
between system input and output in the frequency domain. Results for axial and transverse wave prop-
agations in laminated composite plates of various configurations show excellent agreement with finite
element simulations using Abaqus�.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Wave propagation in elastic structures has been studied exten-
sively and applied for transient response prediction, mechanical
property characterization, and nondestructive evaluation (NDE)
[1–5]. Composite (elastic) structures are increasingly used in many
industries such as transportation (air, land, and sea), wind energy,
and civil infrastructure due to several advantages including higher
specific strength and modulus, fewer joints, improved fatigue life,
and higher resistance to corrosion. Lamb wave based structural
health monitoring (SHM), which aims to perform nondestructive
evaluation through integrated actuators and sensors, has been a
very active area of research in the past decade [6–10]. A validated
physics-based model for wave propagation combined with exper-
imental measurements is generally required for complete charac-
terization (presence, location, and severity) of damages.

The modeling of wave propagation in composites presents com-
plexities beyond that for isotropic structures [2,4]. Analytical solu-
tions for wave propagation are not available for most practical
structures due to complex nature of governing differential equa-
tions and boundary/initial conditions. The finite element method
(FEM) is the most popular numerical technique for modeling wave

propagation phenomena. However, for accurate predictions using
FEM, typically 20 elements should span a wavelength [11], which
results in very large system size and enormous computational cost
for wave propagation analysis at high frequencies. In addition,
solving inverse problems (as required for NDE/SHM) is very diffi-
cult using FEM. Spectral finite element (SFE), which follows FEM
modeling procedure in the transformed frequency domain, is
highly suitable for wave propagation analysis [12–14]. SFE models
are many orders smaller than FEM and highly suitable for efficient
NDE/SHM. Frequency domain formulation of SFE enables direct
relationship between output and input through system transfer
function (frequency response function). SFE has very high compu-
tational efficiency since nodal displacements are related to nodal
tractions through frequency-wave number dependent stiffness
matrix. Mass distribution is captured exactly and the accurate ele-
mental dynamic stiffness matrix is derived. Consequently, in the
absence of any discontinuities, one element is sufficient to model
a beam or plate structure of any length.

Fast Fourier Transform (FFT) based Spectral Finite Element
(FSFE) method was popularized by Doyle [12], who formulated
FSFE models for isotropic 1-D and 2-D waveguides including ele-
mentary rod, Euler Bernoulli beam, and thin plate. Gopalakrishnan
and associates [13,15] extensively investigated FSFE models for
beams and plates-with anisotropic and inhomogeneous material
properties. The FSFE method is very efficient for wave motion anal-
ysis and it is suitable for solving inverse problems; however, FSFE
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cannot model waveguides of short lengths. For 2-D problems, FSFE
are essentially semi-infinite, that is, they are bounded only in one
direction [12,13]. Due to the global basis functions of the Fourier
series approximation of the spatial dimension, the effect of lateral
boundaries cannot be captured. In addition, FSFE requires assump-
tion of periodicity in time approximation resulting in ‘‘wrap-
around’’ problem for smaller time window, which totally distorts
the response.

The 2-D Wavelet based Spectral Finite Element (WSFE) pre-
sented by Gopalakrishnan and Mitra [14] overcomes the ‘‘wrap-
around’’ problem and can accurately model 2-D plate structures
of finite dimensions. WSFE uses orthogonal compactly supported
(localized) Daubechies scaling functions [16] as basis for both tem-
poral and spatial approximations. Gopalakrishnan and associates
have formulated WSFE elements for wave propagation in rods,
higher order beams, and plates with both isotropic and anisotropic
material properties [17–20]. However, the 2-D WSFE plate formu-
lation presented in [14,19,20] is based on the classical laminated
plate theory (CLPT) [21]. The CLPT based formulations exclude
transverse shear deformation and rotary inertia resulting in signifi-
cant errors for wave motion analysis at high frequencies, especially
for composite laminates which have relatively low transverse shear
modulus [22,23]. Wave propagation in composite laminates based
on the first order shear deformation theory (FSDT) [21], which ac-
counts for transverse shear and rotary inertia, yields accurately re-
sults comparable with 3-D elasticity solutions and experiments
even at high frequencies [22,23]. For isotropic materials FSDT is
known to be exceptionally accurate down to wavelengths compara-
ble with the plate thickness h, whereas CLPT is of acceptable accu-
racy only for wavelengths greater than, say, 20h [24].

This paper presents a new 2-D WSFE based on FSDT for high fre-
quency analysis of waveguides with finite dimensions and aniso-
tropic material properties. Governing partial differential equations
(PDEs) for wave motion and their temporal approximation using
Daubechies compactly supported high-order scaling functions are
presented. An eigenvalue analysis is performed to decouple the re-
duced PDEs in spatial dimensions. The decoupled PDEs are then
approximated in one spatial dimension using Daubechies lower-or-
der scaling functions followed by an eigenvalue analysis similar to
the time approximation. The resulting ordinary differential equa-
tions (ODEs) are solved exactly in frequency-wavenumber domain
and the solution is used as shape function for the 2-D spectral ele-
ment. Numerical experiments are performed to highlight the differ-
ences between FSDT and CLPT in dispersion curves, provide
spectrum relationships, and present time domain responses. Results
for the new WSFE formulation are validated with Abaqus� simula-
tions using shear flexible shell elements [25].

2. Formulation of wavelet spectral finite element with shear
deformation

Two dimensional wavelet spectral finite element with shear
deformation is formulated here for anisotropic composite
laminates.

2.1. Governing differential equations for wave propagation

Consider a laminated composite plate of thickness h with the
origin of the global coordinate system at the mid-plane of the plate
and Z axis being normal to the mid-plane as shown in Fig. 1(a).
Fig. 1(b) shows the corresponding nodal representation with de-
grees of freedom (DOFs). Using FSDT, the governing partial differ-
ential equations (PDEs) for wave propagation have five degrees
of freedom: u, v, w, /, and, w. The terms u(x,y, t) and v(x,y, t) are
mid-plane (z = 0) displacements along X and Y axes; w(x,y, t) is

transverse displacement in Z direction, and w(x,y, t) and /(x,y, t)
are the rotational displacements about X and Y axes, respectively.
The displacements w, / and w do not change along the thickness
(Z direction). The quantities (Nxx,Nxy,Nyy) are in-plane force resul-
tants, (Mxx,Mxy,Myy) are moment resultants, and (Qx,Qy) denote
the transverse force resultants.

The FSDT displacement field Eq. (1) represents a constant shear
strain in the transverse (thickness) direction.

Uðx; y; z; tÞ ¼ uðx; y; tÞ þ z/ðx; y; tÞ
Vðx; y; z; tÞ ¼ vðx; y; tÞ þ zwðx; y; tÞ
Wðx; y; z; tÞ ¼ wðx; y; tÞ

ð1Þ

The equations of motion based on the above displacement field are
given by [21],
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where the stiffness constants Aij, Bij, Dij and the inertial coefficients
I0, I1 and I2 are defined as

½Aij;Bij;Dij� ¼
XNp

q¼1

Z zqþ1

zq

Q ij 1; z; z2
� �

dz; I0; I1; I2f g

¼
Z h=2

�h=2
f1; z; z2gqdz ð3Þ

The term Qij are the stiffnesses of the qth lamina in laminate coordi-
nate system, Np is the total number of laminae (plies), q is the mass
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