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A simple yet efficient solution approach based on the Haar wavelet is presented for the free vibration
analysis of functionally graded (FG) cylindrical shell. The first-order shear deformation shell theory is
adopted to formulate the theoretical model. The separation of variables is first performed according to
Levi approach; then Haar wavelet discretization is applied with respect to the axial direction and Fourier
series is assumed with respect to the circumferential direction. The constants appearing from the inte-
grating process are determined by boundary conditions, and thus the partial differential equations are
transformed into algebraic equations. The natural frequencies of the FG cylindrical shells are obtained
by solving algebraic equations. The accuracy and reliability of the current solutions are validated by
numerical examples and comparison with the results available in the literature. It is shown that accurate
frequencies can be obtained by using a small number of collocation points and boundary conditions can
be easily achieved. Detailed parametric analysis is carried out to show the effects of some geometrical
and material parameters on the natural frequencies of FG cylindrical shells. The advantages of this cur-
rent solution method consist in its simplicity, fast convergence, low computational cost and high

precision.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

With the development of modern industries, a new class of
composite materials known as functionally graded materials
(FGMs) has drawn considerable attention. The term FGMs was
originated in the mid-1980s by a group of scientists in Japan. Since
then, an effort to develop high-resistant materials using FGMs had
been continued. However, the analysis of FGMs structures is more
complicated than that of homogeneous material structures, owing
to the spatial variations of material properties. In order to investi-
gate the stress and displacement fields of FGMs body, one needs to
solve the partial differential equations with variable coefficients.
This class of problem is challenging and thus there is a lot of liter-
ature on the mechanical behavior of FGMs structures. As one of
important and common structural components, cylindrical shells
of composite materials are widely used in practical engineering
applications. Therefore, vibration analysis of FG cylindrical shell of-
ten is required and of great technical importance, allowing the
designers and engineers to provide optimal design and avoid
unpleasant, inefficient and structurally damaging resonant.

The increasing use of composite shell structures has moti-
vated great interest in developing various shell theories and
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computational approaches for analyzing their dynamic behaviors
[1-28]. Especially in the last several decades, a huge amount of re-
search efforts have been devoted to the vibration analysis of vari-
ous composite cylindrical shells in the literature. Therefore, it is
not possible to review all of them here, only some of them are gi-
ven in this section. More detailed descriptions on the development
of researches on this subject may be found in several monographs
respectively by Leissa [1], Quta [2], Reddy [3], Carrera [4], and
some review or survey articles [5-7]. As far as the shell deforma-
tion theories reported in previous studies are concerned, there
are three major theories which are usually known as: the Classical
Shell Theory (CST) [8,9], the First-order Shear Deformation Theory
(FSDT) [10-12] and the Higher-order Shear Deformation Theory
(HSDT) [3,5,13-16]. Researchers have found that application of
classical thin shell theory to thick shells could lead to as much as
30% or more errors in natural frequencies. In addition, as pointed
out by Qu et al. [17], these HSDTs are computationally more
demanding than those FSDTs. Furthermore, from the existing liter-
ature, we can know that the first-order theory with proper shear
correction factors is adequate for the prediction of the global
behaviors of moderately thick shells. Therefore, in present work,
the first-order shear deformation shell theory is just employed to
formulate the theoretical model.

Apart from the aforementioned shear deformation theories, it
has also been of great interest for researchers to develop an
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accurate and efficient method which can be used to determine the
vibration behaviors of FG cylindrical shells. So far, many computa-
tional methods are available for the vibration analysis of cylindri-
cal shells, such as the Rayleigh-Ritz method [8,9], Differential
Quadrature (DQ) method [11,18] Galerkin method [19], Finite ele-
ment method [20-22], wave propagation approach [23], meshless
method [7,24,25], discrete singular convolution (DSC) method [26],
general domain decomposition method [10], and various hybrid
methods [22,25,27,28]. From the review of the literature, it appears
that despite a variety of methods for analytical and computational
analysis of cylindrical shell structures, it is still of need and great
significance to develop a simple and efficient numerical method
for vibration analysis of FGM shells. Therefore, the purpose of the
present work is to introduce the Haar wavelet approach for the free
vibration analysis of FGM cylindrical shells.

Wavelet analysis is a mathematical branch and has been devel-
oping rapidly. In the last several decades, wavelets methods have
been developed as a new powerful tool for mathematical analysis
and engineering computation. The current wavelets-based ap-
proaches include wavelets-collocation method [29-31], wavelet-
finite elements method [32,33], etc. In most wavelet-based meth-
ods, the calculation of the wavelet connection coefficients is a com-
plicated problem [34]. Obviously, attempts to simplify solutions
based on the wavelet methods are required. Recently, the Haar
wavelet which is originally introduced by Alfred Haar in 1910
has drawn considerable attention. One possible reason is that this
kind of wavelet demonstrates its mathematical simplicity. The ini-
tial work in system analysis using Haar wavelets was done by Chen
and Hsiao [35]. They recommended an operational matrix of inte-
gration based on the Haar wavelets. Later, Hsiao and Wang [36,37]
developed this theory and proposed the Haar product matrix and
coefficient matrix. Since the solution procedure is simple and di-
rect, the Haar wavelet has been proven to be an effective tool for
solving various problems, such as differential and integral equa-
tions [38,39], Poisson equations and biharmonic equations [40],
eigenvalues of regular Sturm-Liouville problems [41] and high or-
der differential equations [42], functionally graded plates [43],
damage evaluation of plates [44], and non-uniform and function-
ally graded beams [45,46]. It is worth pointing out that Majak
et al. [47] developed this method and introduced it for solving solid
mechanics problems, and proposed the Haar wavelet discretization
method for solving differential equations based on the weak for-
mulation [48].

In this present work, a numerical discretization approach based
on the Haar wavelet is introduced for the modeling and vibration
analysis of FG cylindrical shells. The material properties of the
shells are assumed to vary continuously in the thickness direction
according to general four-parameter power-law distributions in
terms of volume fractions of the constituents. The effects of shear
deformation are considered. In order to test the convergence, effi-
ciency and accuracy of the proposed method, some numerical
examples are presented for the free vibrations of FG cylindrical
shells. The effects of some geometrical and material parameters
on the natural frequencies are also discussed. The main aim of this
paper is to demonstrate a convenient and efficient application of
the Haar wavelet discretization method to the free vibration anal-
ysis of FG cylindrical shells.

2. Theoretical formulations
2.1. The Haar wavelet series and their integrals
The Haar wavelet is one of the simplest orthonormal wavelet

with a compact support. The Haar wavelet family is defined for
&e0,1] as follows [40,45,48]:
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The integer m=2/(j=0, 1, ...,]) is the factor of scale, where J is the
maximal level of resolution. k=0,1,...,m — 1 is the translation
parameter. The index i is calculated according to the formula
i=m+k+ 1, the maximal value is i = 2M, which is 2/*'; the minimal
value is i =2 (then m=1, k=0). The case i=1 corresponds to the
scaling function:

1 0<é<1
0 elsewhere

mi = { @
The interval [0,1] is divided into 2M subintervals of equal
length Ax =1/2M; the collocation points are given as:
_(1-0.5) B
=5y 1=12....2M 3)
The Haar coefficient matrix H is defined as H (i,1) = hy(¢1). For any
square integrable function y(x) € L[0,1] in the interval [0,1], it can
be expanded into the Haar wavelet series of infinite terms. If y(x) is
piecewise constant by itself, or may be approximated as piecewise
constant during each subinterval, then y(x) will be truncated with
finite terms, that is
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where a; are unknown wavelet coefficients. If we want to solve an
n-th order PDE, the following integrals are required [42]
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In Eq. (5), po(x) = hi(t). These integrals can be calculated analyt-
ically. In the case i = 1, we have p,; (¢) = £*/a!; and in the case i > 1
we obtain the integrals as follows [45]:
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For solving boundary value problems, the value P,;(0) and P,;(1)
should be calculated in order to satisfy the boundary conditions.
Substituting the collocation points in Eq. (3) into Eq. (6) yields

P(i,1) = p,(¢) )

where P*% is a 2M x 2M matrix. It should be noted that calculations
of matrices H (i,) and P**X(i,]) must be carried out only once.

2.2. Description of the model

Let us consider a FG shell of revolution with uniform thickness
h. A differential element of the shell is depicted in Fig. 1. The length
and mean radius of the shell are represented by L and R, respec-
tively. The reference surface of the shell is taken to be at its middle
surface where an orthogonal coordinate system (x, 6 and z) is fixed.
The x-coordinate is taken in the axial direction of the shell, where
the 0 and z axes are respectively in the circumferential and radial
directions.
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