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a b s t r a c t

The first order shear deformation theory (FSDT) is used to present the buckling and initial post-buckling
characteristics of symmetrically cross-ply laminated plates. In the buckling phase the Von-Karman’s
equilibrium equation is solved exactly for the FSDT to obtain out-of-plane mode shapes and critical loads.
The current post-buckling study is effectively a single-mode analysis, which is attempted by utilizing the
so-called semi-energy method. The Von-Karman’s compatibility equation is solved exactly in the post-
buckling phase with the assumption that the deflected form immediately after buckling is the same as
that obtained for buckling. The Principle of Minimum Potential Energy is invoked to solve for the
unknown coefficients in the assumed out-of-plane deflections and rotation functions.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Prismatic plates and plate structures are often employed in situ-
ations where they are subjected to in-plane compressive loading.
In aerospace, in particular, the quest for efficient, light weight
structures often leads to allowing for the possibility of local buck-
ling and post-local-buckling at load levels lying between the de-
sign limit load and ultimate conditions. Thus it is important to
accurately predict the buckling and post-buckling behavior of such
structures.

The first person who developed the basic concepts of finite strip
method (FSM) is Cheung [1]. Cheung’s theory is based on the idea
that the finite strip can be assumed as a kind of finite element in
which special long elements called strips are used.

After Cheung, different variations/extensions of FSM are
achieved by many researchers. Lau and Hancock [2], Wang and
Dawe [3] and Zou and Lam [4] used FSM implementing Classical
Plate Theory (CLPT), First-order Shear Deformation Theory (FSDT)
and Higher-order Shear Deformation Theory (HSDT). The post-lo-
cal-buckling behavior of elastic plates or plate structures is a geo-
metric non-linear problem. The non-linearity occurs as a result of
relatively large out-of-plane deflection, which necessitates the
inclusion of non-linear terms in the strain–displacement equa-
tions. Many works have been done concerning the geometrically
non-linearity response of the structures by using FSM. Early works
are those of Graves-Smith and Sridharan [5,6] and Hancock [7].
These authors have assumed a plate with simply-supported ends

subjected to progressive end shortening. Subsequently the post-
buckling behavior of the structure is predicted by using FSM in
which the in-plane displacement fields are postulated in addition
to the out-of-plane displacement field. The lengthwise variations
in the displacement fields are trigonometric functions, and the
crosswise variations in both in-plane and out-of-plane displace-
ment fields are simple polynomial functions. An energy-based
method, referenced to as the semi-energy method by Rhodes and
Harvey [8], was first used by Marguerre [9] and has since been
used by various researchers. Rhodes’ [10] and Chou and Rhodes’
[11] papers are mostly based on the semi-energy method while
containing some useful experimental data. Khong and Rhodes
[12] have setup a computationally efficient approach to the post-
buckling analysis of prismatic structural members. In this ap-
proach, a linear finite strip method, developed for the buckling
analysis, based on the Principle of Minimum Potential Energy is
employed to find the buckling eigenvector. This eigenvector is then
used as the post-buckled deflected shape in a single-term post-
buckling analysis based on the Principle of Minimum Potential
Energy. The analysis is simplified by the assumption that stresses
in the direction perpendicular to loading and shear stresses have
negligible effects. This approach can be considered as a lower
bound method of post-buckling analysis (i.e. the post-buckling
stiffness of the structure is underestimated by this approach).
The method is applied to plain and stiffened channel sections as
well as Z-sections.

Ovesy et al. [13–15] have developed a Semi-energy post-local-
buckling FSM (S-e FSM) in which the out-of-plane displacement
of the finite strip is the only displacement which is postulated by
a deflected form as distinct to that mentioned so far in the paper
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with respect to the previously developed methods. The developed
semi-energy FSM (S-e FSM) has been applied to analyze the post-
local-buckling behavior of thin flat plates [5], open channel section
[14] and box section struts [15]. Ovesy and Ghannadpour [16–18]
have also developed a single-term Full-analytical FSM (F-a FSM)
based on CLPT in which the Von-Karman’s equilibrium equation
is solved exactly and so the buckling mode shapes and loads are
obtained with very high accuracy. The obtained mode shapes are
then used in the post-buckling phase and the Von-Karman’s com-
patibility equation is solved exactly and the in-plane displace-
ments are obtained with very high accuracy.

Ghannadpour and Ovesy [19,20] have further enhanced their
post-buckling exact CLPT finite strip method by taking into account
a combination of the first, second and higher (if required) modes of
buckling. The Von-Karman’s compatibility equation is then solved
by substituting the combined deflection function, and thus the
post-buckling behavior of isotropic structures are investigated
with high accuracy. Ghannadpour and Ovesy [21] have upgraded
their exact strip for calculating the relative post-buckling stiffness
of composite plates based on the CLPT. Ovesy et al. [22] have devel-
oped a new exact finite strip for investigating the buckling behav-
ior of moderately thick composite plates and plate structures based
on the FSDT. In this method the Von-Karman’s equilibrium set of
equations has been solved analytically and the buckling mode
shapes has been found with very high accuracy. Ghannadpour
et al. [23] have recently extended their exact method for non-linear
initial post-buckling behavior of isotropic plates based on the FSDT.

In this paper, an exact finite strip is modeled using the FSDT. In
this model for the first time, the buckling and initial post-buckling
analysis of moderately thick composite plates have been pre-
sented. In the buckling phase, with the assumption that the two
loaded ends are simply supported and the other two ends have
arbitrary out-of-plane boundary conditions, the Von-Karman’s
equilibrium set of equations has been solved exactly. A transcen-
dental stiffness matrix is obtained for an individual composite
strip. The analytical solution function of the set of equations has
been developed to a more general function which contains all of
the solution conditions. Thus the general out-of-plane buckling
modes are obtained with very high accuracy. The Von-Karman’s
compatibility equation is then solved exactly to obtain the general
form of in-plane displacement fields in the initial post-buckling
region.

2. Theoretical developments of the F-a FSM

In this section, the fundamental elements of the theory for the
developed exact finite strip in buckling and initial post-buckling
problems are outlined. It must be noted that a perfectly flat exact
strip made up of orthotropic layers constructing symmetric lami-
nates, which possesses out-of-plane orthotropy, is assumed
throughout the theoretical developments of this paper. The so-
called exact finite strip is assumed to be simply supported out-
of-plane at the loaded ends and arbitrary out-of-plane boundary
condition at the other two edges. It is important to mention that
the plate is assumed to be moderately thick, thus the FSDT is ap-
plied in the remaining of the paper.

2.1. Basic formulation of the problem

An exact finite strip, as schematically shown in Fig. 1, and is of
length L, width b and thickness h is assumed. As mentioned earlier,
the finite strip is simply supported out-of-plane at both ends, i.e.

w ¼ uy ¼ Mx ¼ 0 ð1Þ

It must be noticed that the FSDT is applied, thus

û ¼ uþ zux; t̂ ¼ tþ zuy; ŵ ¼ w ð2Þ

where û; v̂ and ŵ are components of displacement at a general
point, whilst u, v and w are similar components at the middle sur-
face (z = 0), ux is the rotation of a transverse normal about the axis y
and uy is the rotation of a transverse normal about the axis x. In the
FSDT it is assumed that the whole transverse shear components
cannot be neglected, thus, with respect to this assumption, the
stress–strain relationship at a general point for a symmetrically
cross-ply laminated composite plate becomes:
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where �r and �e are the stresses and strains at a general point and
Qijði; j ¼ 1;2;4;5;6Þ are plate stiffness coefficients.

Internal forces and moment acting on the edges of a strip are
expressed in terms of forces and the moments per unit distance
along the strip edge. The forces and moments intensities are re-
lated to the internal stress by the equations

hNxx Nyy NxyiT ¼
Z h=2

�h=2
h�rxx �ryy �sxyiT dz ð4aÞ

hMxx Myy MxyiT ¼
Z h=2

�h=2
h�rxx �ryy �sxyiT zdz ð4bÞ

hQ x Q yiT ¼ K
Z h=2

�h=2
h�sxz �syziT dz ð4cÞ

where K is a shear correction factor and can be obtained from the
method developed in [24].

It is noted that the stress and strain vectors �r0 ¼ h�rxx �ryy �sxyiT

and �e0 ¼ h�exx �eyy �cxyiT include the components corresponding to
the membrane and bending contributions as outlined below

�r0 ¼ rþ rb; �e0 ¼ eþ eb ð5Þ

where r and e correspond to the membrane contribution, and rb

and eb relate to the bending and twisting actions. It is noted that
the membrane strain e can be subdivided into its linear el and
non-linear enl component as given below

e ¼ el þ enl ¼
u;x
v ;y
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Fig. 1. A typical exact finite strip.
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