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a b s t r a c t

With the introduction of composite materials to industrial aerospace applications, the research for inno-
vative panel stiffening methods has gained significant interest. Possible candidates are grid-stiffened
structures comprising of parallel and intersecting stiffeners forming regular polygonal patterns of skin
fields. Since these thin-walled structures are critical to buckling, the structural stability is one of the driv-
ing criteria for minimum weight design. The present study investigates the local skin buckling of grid-
stiffened structures known as orthogrid, isogrid, diamond grid and kagome grid with a semi-analytical
RITZ energy method based on sets of trigonometric shape functions. The influence of the aspect ratio (stiff-
ener angle), curvature and material orthotropy is shown for uni- and biaxial in-plane compression and
shear. A self-stiffening effect of the grid-stiffened structures due to interaction with adjacent skin fields
is identified, significantly increasing the buckling resistance of such structures. The presented results and
trends support preliminary design tasks and the verification of detailed finite element analyses.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the early 1970s, General Dynamics and McDonnell Douglas
layed the foundations for the grid-stiffened structures by pioneer-
ing the isogrid [11,14], an isotropic stiffened shell with ribs form-
ing an equilateral triangular grid and having the structural panel
behaviour of an isotropic material. Since then, a variety of grid-
stiffened [5] and lattice structures [18] have been designed for civil
and aerospace applications. However, literature on local skin buck-
ling is rare and seems to lack a certain understanding of the funda-
mental behaviour of these structures. This work intents to improve
the basis for this driving criterion in aerospace applications.

Today’s common approach to use the finite element analysis in
the early preliminary design phase shows its limits when investi-
gating the structural stability of curved orthotropic grid-stiffened
structures with arbitrary stiffener angles. The linear eigenvalue
analysis appears to be highly sensitive to elementation, idealisa-
tion, mesh quality and boundary conditions. As a consequence,
the results show substantial deviations when changing FE-model-
ling. Analytical solutions on the other hand are only available for
specific flat panel shapes, loads and boundary conditions, see, e.g.
[3,4,6,8,9,15,16,19–24], but even those show limited general agree-
ment for local skin buckling with detailed FE models.

The currently investigated stiffener arrangements form rectan-
gular, isosceles triangular, rhombic and tri-hexagonal patterns,
denoted orthogrid, isogrid, diamond grid and kagome grid, and

depicted in Fig. 1. A conventional frame-stringer architecture may
thereby be considered as orthogrid with a high length-to-width or
aspect ratio. The applied loads are chosen as constant in-plane
compressive and shear forces per unit length. A constant curvature
is defined in the lateral direction, where an infinite radius defines a
flat plate. Homogeneous material orthotropy is presumed and its
effects are analysed for a variable angle-ply laminate. The interac-
tion between adjacent skin fields during buckling is mathematically
incorporated and may be viewed as an elastic boundary condition on
the individual skin field. A comparison with simply supported panels
of rectangular and isosceles triangular shape is carried out. Hence-
forth, skin field denotes the elastic condition whereas single panel
denotes the simply supported case. For details on the analytical
fundamentals the reader may refer to textbooks at [7,12,17].

2. Analytical fundamentals

The non-linear strain–displacement relations of a thin single-
curved shell following the KIRCHOFF/LOVE [10] assumptions of zero
transverse shear are described by

�xx ¼ u;x þ ðw;xÞ2=2; �yy ¼ v ;y þw=Rþ w;y
� �2

=2;
cxy ¼ u;y þ v ;x þw;xw;y; ð1aÞ
jxx ¼ �w;xx; jyy ¼ �w;yy; jxy ¼ �2w;xy; ð1bÞ

where u, v, w are the displacement fields in the x, y, z direction,
respectively. The shell is curved in y direction by the radius R. The
comma subscript notation denotes differentiation with respect to
the stated variables. The stress resultants for an orthotropic shell,
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in form of the body forces Nxx, Nyy, Nxy and moments Mxx, Myy, Mxy,
read

Nxx ¼ A11�xx þ A12�yy; Nyy ¼ A12�xx þ A22�yy; Nxy ¼ A66cxy; ð2aÞ
Mxx ¼ D11jxx þ D12jyy; Myy ¼ D12jxx þ D22jyy; Mxy ¼ D66jxy; ð2bÞ

where Aij and Dij for i, j = 1, 2, 6 are the membrane and bending stiff-
nesses of the shell as defined within the Classical Laminate Theory
[12]. The strain energy of this shell is derived with

U ¼ 1
2

ZZ
Nxx�xx þ Nyy�yy þ Nxycxy þMxxjxx þMyyjyy þMxyjxy

� �
dxdy;

ð3aÞ

and the potential due to the work performed by externally applied
in-plane normal loads Nx, Ny and shear load Ns with

W ¼
ZZ

Nx�xx þ Ny�yy þ Nscxy

� �
dxdy: ð3bÞ

Note the definition of positive Nx, Ny representing compressive
loads. By definition, only the linear strains in (1) are considered in
(3b). The integration in (3) is carried out over the shell’s mid-sur-
face. The total potential P of the shell is the sum of the strain energy
potential U and the potential of external work W; that is P = U + W.

2.1. Variational energy formulations

A body is in static equilibrium when the first variation of the to-
tal potential vanishes, dP = 0. The body is critical to buckling when
the total potential’s second variation changes sign, that is d2P = 0.
A stable solution is found from the first variation of the variational
displacements in d2P. This criterion is known as the adjacent equi-
librium [7] or TREFFTZ criterion, d(d2P) = 0. The original potential of
the external work W vanishes from the second variation due to the
defined linearity in the strains, but reappears in d2U. Hence, it is
convenient to restate d2P = d2U + d2V, with

d2U ¼
ZZ

A11ðu;xÞ2 þ 2A12ðu;xv ;y þ u;xw=RÞ þ A22ðv ;y þw=RÞ2
h

þA66ðu;y þ v ;xÞ2 þ D11ðw;xxÞ2 þ D22ðw;yyÞ2

þ2ðD12 þ 2D66Þðw;xyÞ2
i
dxdy;

ð4aÞ

and

d2V ¼
ZZ

Nxðw;xÞ2 þ Nyðw;yÞ2 þ 2Nsðw;xw;yÞ
h i

dxdy: ð4bÞ

The variational operator on the displacements in (4) is omitted
for brevity. Thereby, (4a) may be viewed as the virtual internal
energy in the linear prebuckling configuration, whereas (4b)
expresses the virtual work due to the non-linear buckling reaction.
These formulations follow the principle of minimum total potential
energy [12].

3. Buckling of orthotropic grid-stiffened shells

The stiffening patterns of the investigated grid-stiffened shells
in Fig. 1 are generalised by defining the aspect ratio b = a/b and
the equivalent half vertex angle a = arctan(b/2a). The length a
and width b are the altitude and base length of the triangular panel
depicted in Fig. 2. The angle a represents the inclination of the
diagonal stiffeners to the x axis. Note that rhombic and tri-hexag-
onal unit cells would actually be of twice the length a.

A geometrical non-dimensionalisation is achieved by introduc-
ing the computational coordinates n = x/a and g = y/(b/2), see Fig. 2.
The non-dimensional curvature is expressed by the curvature
parameter j = b2/(Rt) with the radius R and the thickness t, see
[1]. The material properties are parameterised with dij ¼ Dij=D,
where the mean bending stiffness D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11D22
p

. For isotropic
materials D � D ¼ E=ð12ð1� m2Þ and d11 = 1, d12 = m, d66 = (1 � m)/2
with the YOUNG’s modulus E and POISSON ratio m. Since material
homogeneity is presumed, the membrane stiffnesses are expressed
in terms of the bending stiffnesses, Aij = 12Dij/t2.

(a) (b)

(c) (d)

Fig. 1. Investigated stiffening pattern with skin fields of the same vertex angle, a = arctan (b/2a), and defined aspect ratio, b = a/b: (a) rectangular (orthogrid), (b) isosceles
triangular (isogrid), (c) rhombic (diamond grid) and (d) tri-hexagonal pattern (kagome grid).

Fig. 2. Geometric properties of a triangular single-curved panel.
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