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a b s t r a c t

This research presents new continuous elements for thick laminated plates on a Pasternak or a non-
homogeneous foundation using the Dynamic Stiffness Method (DSM). The non-homogeneous foundation
consists of multi-section Winkler-type and Pasternak-type elastic foundation. The Dynamic Stiffness
Matrices using the First Shear Deformation Theory (FSDT) are constructed based on the exact closed form
solutions of the governing differential equations of both cross-ply and angle-ply thick composite plates
on non-homogeneous elastic foundations and subjected to various types of boundary conditions. A com-
puter program is written using the present formulation for calculating the natural frequencies and har-
monic response of composite plates without contact with elastic foundation and composite plates resting
on non-homogenous foundations. The validation is done by comparison of continuous element model
with available results in the literature and with Finite Element Method (FEM). Different test cases confirm
the advantages of the present model which is supposed to be especially efficient in dynamics analysis.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The vibration of laminated composite plates on elastic founda-
tions is of great interest to the engineering community. Usage of
these systems can be found in aerospace structures, aircraft run-
ways, nuclear reactors, building foundation slabs, railway tracks,
indoor sport floors, petro-chemical and submarine structures, etc.
The comprehension of static and dynamic behaviors of plates or
shells resting on a non-homogenous elastic foundation is very
important because such systems represent real plate-foundation
structures in industry. Numerous researches are carried out in or-
der to design safer and more economic thick laminated composite
plate structures supported by non-homogenous elastic founda-
tions. The elastic foundation can be represented by different mod-
els. The simplest model for the elastic foundation is Winkler or
one-parameter model, which regards the foundation as a series
of separated springs without coupling effects between each other
[1]. Pasternak [2] improved this model by adding a shear layer to
Winkler model. Pasternak or two-parameter model is widely used
to describe the mechanical behavior of structure-foundation inter-
actions. There have been a considerable number of studies on the
plates resting on elastic foundation. Thambiratnam and Zhuge [3]
solved the vibration of a stepped beam supported on a stepped
elastic foundation by a finite-element method. Omurtag and Kadio-
glu [4] investigated the vibration of Kirchoff plates on Winkler and

Pasternak foundations using a mix finite element method. Buckling
and vibrations of unsymmetric laminates resting on elastic founda-
tions under in-plane and shear forces are studied by Aiello and
Ombres [5] by use of Rayleigh–Ritz method. Recently, Shen et al.
[6] examined the dynamic response of laminated plates under
thermo-mechanical loading and resting on a two-parameter elastic
foundation by the analytical method based on Reddy’s higher order
shear deformable plate theory. More advance study on buckling
and free vibration analysis of symmetric and anti-symmetric lam-
inated composite plates on an elastic foundation was conducted by
Akavci [7] using Navier technique and a new hyperbolic displace-
ment model. Ugurlu et al. [8] investigated the effects of elastic
foundation and fluid on the dynamic response characteristics of
rectangular Kirchhoff plates using a mixed-type finite element for-
mulation. Malekzadeh et al. [9] analyzed the vibration of non-ideal
simply supported laminated plates on an elastic foundation subject
to in-plane stresses with the Lindstedt–Poincare perturbation tech-
nique. The vibration of isotropic Mindlin plate on non-homoge-
neous Winkler foundation has been considered by Xiang [10]
using Levy solutions.

The vibration analysis of structures in the medium and high fre-
quency range plays an important role in sound transmission, sound
isolation problems, fast spinning shafts as well as in the detection
of defects by wave propagation or in avoiding possible resonance.
Actually, only few approaches such as Statistical Energy Analysis
[11] can be used efficiently for high frequency range but there is
no adequate method suitable for predicting the vibration of struc-
ture in medium frequencies. Both FEM and Boundary Element
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Method (BEM) are widely used for analyzing the vibration of struc-
ture in low frequencies but they meet difficulty when dealing with
the numerical computation in medium and high frequencies. In
those frequency ranges, a very fine mesh of FEM or BEM model is
required which can exceed the storage capacity of computer, re-
duce the computing time and accumulate the numerical comput-
ing errors.

The Dynamic Stiffness Method (DSM) or Continuous Element
Method (CEM) [12] has been developed in order to overcome these
difficulties of dynamic problems. The CEM is based on the exact
closed form solution of the governing differential equations of mo-
tion which leads to the Dynamic Stiffness Matrix relating a state
vector of loads to the corresponding state vector of displacements
at the edges of the structure. By using CEM, one or some continu-
ous elements are enough to compute any range of frequencies with
any desired accuracy. In addition, continuous elements can also be
assembled together in order to model more complex structures by
using the same principle of assembly in FEM. The use of minimum
of continuous elements allows a fast acquisition of harmonic re-
sponse thus it reduces the computing time compared to FEM
[19,20,23].

Numerous researches have been carried out for DSM of metal
and composite beams [13–15] as well as for plate structures [16–
18]. CEM model for vibration of isotropic shells of revolution and
shells subjected to symmetrical load have also deeply been exam-
ined [19,20]. Several industrial computer codes using DSM such as
BUNVIS-RG [21], PFVIBAT [22] or ETAPE [20] have been developed
which confirmed the performance of CEM.

Recently, our previous study [23] focusing on DSM of composite
cylindrical shells has been presented. A new study on DSM of ring
structures was also introduced in [24]. Concerning composite
plates, Boscolo et al. [25–27] has proposed the DSMs and the
assembly of DSMs for the vibration analysis of composite plates
and plates with stiffeners but in those researches only symmetric
cross-ply composite plates without considering the effect of elastic
foundations are investigated.

Despite of abundant researches on CEM for isotropic and aniso-
tropic beam, shell and plate structures, to the author’s best knowl-
edge, no work related to DSM for thick composite plates including
both cross-ply and angle-ply laminates resting on Pasternak foun-
dation or non-homogenous elastic foundation has been reported in
the literature. This paper aims to fill the apparent gap in this area
by providing the powerful Dynamic Stiffness Matrices for the
vibration analysis of thick general cross-ply and anti-symmetric
angle-ply laminated plates without contact with elastic foundation
and for composite plates resting on a Pasternak or a non-homoge-
nous elastic foundation. The effects of shear forces and rotational
inertia have also been taken into account. The influences of the
foundation stiffness parameter, the boundary condition, the foun-
dation length ratio and the plate thickness ratio on the frequency
parameters of both general cross-ply and angle-ply composite
plates are also investigated.

Our model is validated by comparing with different interna-
tional researches and with FEM solutions. CEM has proved excel-
lent accuracy, especially in the range of medium and high
frequencies where FEM and BEM give unreliable solutions due to
errors of meshing. Results on natural frequencies and harmonic re-
sponses of composite plates without or on non-homogenous elas-
tic foundation make evidence the advantages of the present model:
better precision of solution, size of model and computing time re-
duced. The proposed CEM results serve as a benchmark for FEM
and other semi-analytical methods.

2. Theoretical formulations of laminated composite

Consider a thick composite laminated rectangular plate of
dimensions a � b resting on a Pasternak elastic foundation as
shown in Fig. 1; k1 is linear stiffness of foundation, k2 is the shear
modulus of the sub-grade. The two opposite edges y = 0 and y = b
are assumed to be supported and boundary conditions of the two
remaining edges can be any combination of free, clamped or sup-
ported types. The plate has a uniform thickness h and in general
is made up of some or many laminate layers; each consists of uni-
directional fiber reinforced composite material. Based on the FSDT,
the displacement field at a point Mo in the middle plane of the plate
is express as [28]

u ¼ u0ðx; yÞ þ zuxðx; yÞ; v ¼ v0ðx; yÞ þ zuyðx; yÞ; w ¼ w0ðx; yÞ
ð1Þ

where u0, v0 are the in-plane displacements and w0 is the transverse
displacement of a point Mo(x,y) on the middle plane; ux, uy are
rotations of the normal to the middle plane about y and x axes
respectively. The strains are related to the displacements by the fol-
lowing expressions:
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The constitutive equations for the composite laminated plate are
determined by [28]:
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The reduced stiffness coefficients in above equations are estimated
as:

Fig. 1. A composite plate on Pasternak elastic foundation.
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