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a b s t r a c t

This paper deals with static indentation of sandwich beams with a foam core. An analytical model is pre-
sented assuming that the specific response of foams in compression can be assimilated to an elastic–per-
fectly plastic behavior. The elastic part is represented using Vlasov’s model. The displacements and stress
calculated with this two parameters model are compared with results given by Winkler’s theory and
Finite Element Method. Vlasov’s idealization gives more accurate results that Winkler’s model. A com-
plete study of the influence of the parameters of Vlasov’s model is performed. Then, plasticity is added
to the model to represent the non-linear response of the core. The load–displacement response of sand-
wich beams under static indentation is calculated and compared to experimental and Finite Element
results. A good correlation is found. The size of the area where the foam is crushed given by the developed
model is in good agreement with Finite Element analysis.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

This article deals with the analytical modeling of indentation of
composite sandwich beam with composite face sheets and foam
cores. Composite sandwich structures are widely used in the field
of transportation (helicopter blades, ship’s hull, etc.) for their low
weight and high in plane and flexural stiffness. During their life,
these structures can be subjected to localized loadings, like im-
pacts of birds or hailstones. Even though a visual examination of
the loaded surface may reveal little damage, significant damage
might exist and cause important reductions in the strength of the
structure. That is why significant research efforts have been fo-
cused on the study of impacts on sandwich structures and the
study of the local deformations in the contact zone is an important
component of it.

A comprehensive review article of Abrate [1] discusses impacts
on composite sandwich structures. The contact laws for sandwich
structures differ significantly from that for a monolithic laminates.
The local deformation in the contact zone consists of the local
indentation of the top face sheet and in a large part of the deforma-
tion of the core material under that face sheet. Many experimental
studies have been carried out [2–7] to understand the behavior of
sandwich beams under quasi-static and dynamic loadings. Failure
modes have been identified. For low impact energy levels, the
beams deform within the elastic range. For higher energy levels,

four basic modes are identified: core crushing, facesheet buckling,
delamination within the facesheet and debonding between the
facesheet and the core. The contact force-indentation relation for
quasi-static and low velocity impacts is non-linear, owing to the
specific response of the foam core or honeycomb core in compres-
sion [8,9].

In order to predict the overall response of the sandwich struc-
tures, several models have been proposed. The Finite Element
Method is often used [10–13] to study the static and dynamic
indentation of sandwich structures. The developed models are able
to well represent the static and dynamic indentation response of
sandwich panels. The computed failure modes match experimental
observations for several impact energies, impact angles and
specimen configurations. However, setting up such models is
complicated and calculation times are high.

Many analytical models have been developed to predict inden-
tation failure in sandwich structures. The comprehensive review of
Wang et al. [14] discusses on the various idealizations developed to
model beams and plates on elastic foundations. The modeling of
the core generally follows one of two main strategies. The first
one consists of modeling the core using linear elastic springs. These
springs are independent so shearing effects are not taken into
account [15,16]. This model has been modified to introduce inter-
actions among the spring elements by incorporating a thin elastic
membrane subjected to a constant tension (Filonenko-Borodich
model [17]); an elastic beam or plate (Heteneyi model [18]); or a
beam or a plate that only undergoes transverse shear deformations
(Pasternak model [19]). One of the major disadvantages of these
models is that the identification of the parameters of the
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foundation is very difficult. Indeed, as shown by Gdoutos et al. in
[15], the stiffness value of the foundation has to be deduced from
experimental results. In addition, Heteneyi [18] shows that the
springs’ stiffness expression depends on the loading conditions.

The second modeling strategy consists of idealizing the core as a
three-dimensional continuous elastic solid. From this approach,
Vlasov [20] developed a two parameter model of the core assuming
that there is no horizontal displacements and that vertical dis-
placements can be represented by a single shape function. The
main advantage of this method is that, contrary to one parameter
idealizations, the stiffness parameters can be easily deduced from
material data, regardless of the loading conditions. Moreover, no
specific experimental identification is necessary. This idealization
has been used to model indentation on sandwich beams [21] and
on sandwich panels [22], but only within the elastic range.

To reproduce the non-linear behavior of a sandwich beam, Zenk-
ert et al. [23] presents a modified Winkler model in which the core
is represented by a perfect elastic plastic material law. Experimen-
tal load–displacement curves for indentation tests are matched by
the model, but the model contains rather rough approximations.
Firstly, transverse shear stresses, that play an important role in
the damage of sandwich structures, are not accounted for. Secondly,
the foundation modulus is geometry dependant and can only be ex-
tracted by quite complex experimental procedures.

In the present paper, the core is modeled using Vlasov’s theory,
by a two parameter elastic–perfectly plastic foundation. This mod-
eling strategy presents three main advantages. Firstly, the model is
able to reproduce the linear and non-linear response of the sand-
wich beam. Secondly, transverse shear in the foam is taken into ac-
count for a better accuracy of the stress state in the sandwich
beam. Thirdly, the parameters of the model can be found only from
material data: no specific experimental identification is necessary.

The calculated behavior of the beam before the crushing of the
core is compared with results given by the Winkler theory and Fi-
nite Element Method. Contrary to Winkler’s model, the deflection
of the skin and the stresses in the beam calculated with Vlasov’s
model correlate well with FEM results. The influence of the param-
eters of the Vlasov modeling on the response of a sandwich beam is
studied. Then, the non-linear behavior of the core is taken into ac-
count to predict the size of the crushed zone and the contact force
response. Results are compared to Finite Element and experimen-
tal results. A good correlation is found for the indentation load–
deflection curve and for the size of the area where the foam is
crushed.

2. Linear elastic response

Local loading on sandwich beams can be studied analytically by
considering the core as an elastic foundation. In this section we re-
call the results obtained with Winkler’s model and develop a two
parameter model for the foundation using Vlasov’s approach.

2.1. Winkler’s model

The one parameter Winkler foundation model is widely used to
study local indentation of sandwich beams. For the sake of com-
pleteness, Winkler’s formulation is presented here. This model rep-
resents the core as a system of independent and linear elastic
springs (Fig. 1).

The pressure–deflection relation is given by:

p ¼ kw ð1Þ

where p is the pressure response of the core, k the stiffness of the
springs and w the deflection of the facesheet. For a localized loading
the governing equation of the skin is:

EsIs
d4w

dx4 þ kw ¼ 0 ð2Þ

where EsIs is the flexural rigidity of the skin. The parameter k is the
only parameter that represents the behavior of the whole core. Its
value must be determined with care. In the models described in
[23], k is roughly estimated as:

k ¼ Ecb
tc

ð3Þ

where Ec is the core Young’s modulus, b the width of the beam and
tc the core thickness. The stiffness due to shearing effects is ne-
glected and this estimation may be inappropriate in some cases.

The value of k can also be identified experimentally. Gdoutos
et al. [15] gives an estimated expression of k, function of the skin
and core moduli (respectively Es and Ec) and of the facing thick-
ness ts:

k ¼ 0:64
Ec

ts

Ec

Es

� �1=3

ð4Þ

The solution of Eq. (2) is:

wðxÞ ¼ e�kxðA sinðkxÞ þ B cosðkxÞÞ þ ekxðC sin ðkxÞ þ D cos ðkxÞÞ

with k ¼ k
4EsIs

� �1=4

ð5Þ

The constants A, B, C and D are determined from boundary
conditions:

� the skin remains bounded at infinity.

lim
x!1

wðxÞ ¼ 0 and lim
x!1

dw
dx
ðxÞ ¼ 0 ð6Þ

� the slope at the origin is zero (symmetry).

dw
dx
ð0Þ ¼ 0 ð7Þ

� the shear force at the origin is half the force P applied.

� P
2
¼ Vð0Þ ¼ �EsIs

d3w

dx3 ð0Þ ð8Þ

Thus, the elastic solution can be written as:

wðxÞ ¼ P

8k3EsIs

e�kxðsin ðkxÞ þ cos ðkxÞÞ ð9Þ

2.2. Vlasov’s model

The most important weakness of Winkler idealization is the
independence of the springs. A first estimation of their stiffness
must be done experimentally and the applied loads get localized.

x

z

P

k

Fig. 1. Beam resting on one parameter Winkler elastic foundation.
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