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a b s t r a c t

We present approximate analytical solutions for the nonlinear free vibrations of symmetrically or asym-
metrically laminated composite beams in prebuckling and postbuckling. Simply supported and clamped–
clamped boundary conditions are considered. Galerkin’s discretization is used to obtain the nonlinear
ordinary differential equations governing the large-amplitude vibrations of composite beams in prebuck-
ling and postbuckling, which are found to be of the same form. The variational method of He [20,21] is
used to derive an approximate analytical solution for the nonlinear natural frequency and the nonlinear
load–deflection relation. Results obtained by using the proposed analytical solution is compared with the
finite element results available in the literature and a good agreement has been obtained. Numerical
results to show the variation of the nonlinear natural frequency with the applied axial load for a variety
of composite laminates are presented. The contribution of the amplitude of vibration on the nonlinear
load–deflection response and the nonlinear natural frequency is found to be significant.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Fiber-reinforced laminated composite structures are used in
many engineering applications due to their superior properties
such as high specific strength and high specific stiffness. Structures
that carry inplane loadings are subject to buckle. The critical buck-
ling load defines the threshold at which the prebuckling equilib-
rium position loses its stability. For beams, it is shown that the
first buckling mode is the only stable equilibrium position, in the
postbuckling state, and all higher order modes are unstable, Nayfeh
and Emam [1]. This means that beams have a load-carrying capac-
ity in postbuckling as well. Linear free vibration analysis is a basic
element of understanding the dynamic response of a structure that
is subjected to dynamic loadings. On the other hand, under severe
dynamic loading conditions, structures may undergo large-
amplitude vibrations. In this case, linear free vibration analysis will
not be adequate and a nonlinear free vibration analysis becomes
necessary. The nonlinear free vibrations of isotropic beams have
received a considerable attention by many researchers [2–9]. On
the other hand, a few studies have been reported on the nonlinear
free vibrations of composite beams [10–14]. Gunda et al. [15] stud-
ied large-amplitude vibrations of laminated composite beam with
axially immovable ends with symmetric and asymmetric layup ori-

entations by using the Rayleigh–Ritz (R–R) and finite element
methods. Geometric nonlinearity of von-Karman type, which ac-
counts for the midplane stretching, is considered. Results pre-
sented in that study are valid as long as the beam in its
prebuckling state. Baghani et al. [16] presented analytical expres-
sions for large-amplitude free vibration and post-buckling analysis
of unsymmetrically laminated composite beams on elastic founda-
tion. Besides, the elastic foundation has cubic nonlinearity with
shearing layer. The nonlinear governing equation is solved by
employing the variational iteration method. They presented the ef-
fects of different parameters on the ratio of nonlinear to linear nat-
ural frequency and the post-buckling load–deflection relation.
Their analysis was also valid in the prebuckling state.

To the best of author’s knowledge, the nonlinear free vibrations
of composite beams in the postbuckling state has not been ad-
dressed yet, which was the motivation behind this study. The main
objective of this study is to present an approximate analytical solu-
tion for the nonlinear free vibrations of laminated composite
beams in postbuckling using He’s variational principle. Simply sup-
ported and clamped–clamped boundary conditions are used. The
equation governing the large-amplitude vibrations of composite
beams is a nonlinear integral partial-differential equation. A sin-
gle-mode Galerkin discretization is used to reduce the governing
equation into a nonlinear ordinary-differential equation. It is found
out that the equations governing the nonlinear free vibrations of
composite beams in prebuckling and postbuckling have a similar
form. The model is validated by comparing present results with
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the finite element results available in the literature where a good
agreement is obtained. Numerical results show that the amplitude
of vibration has a significant effect on the nonlinear natural fre-
quency in prebuckling and postbuckling.

2. Problem definition

We consider a composite laminated beam of length ‘, height h,
width b, and mass density q that is subjected to a compressive ax-
ial load bP . The nondimensional equation governing free, un-
damped, large-amplitude lateral vibrations measured from the
undeformed equilibrium position is given by [17]
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are nondimensional parameters. The dot indicates the derivative
with respect to time t, the prime indicates the derivative with re-
spect to the spatial coordinate x, and the hat identifies dimensional
quantities. Here r is the radius of gyration of the cross section
(r ¼
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p
), A11;B11, and D11 are, respectively, the axial, coupling,

and bending stiffnesses defined as
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where the Q11k
is the reduced-transformed stiffness of the kth lam-

ina, ẑk is its height, and N is the number of layers. The material prop-
erties are assumed not to change within a typical lamina [18,19].
The boundary conditions are given by

w ¼ 0 and w00 ¼ 0 at x ¼ 0;1 ð6Þ
w ¼ 0 and w0 ¼ 0 at x ¼ 0;1 ð7Þ

for simply supported and clamped–clamped beams, respectively.
Emam and Nayfeh [17] exactly solved the nonlinear static prob-

lem of Eq. (1). The static postbuckling response corresponding to
the first buckling mode is obtained as follows:

wsðxÞ ¼ bs sin kx ð8Þ

for a simply supported beam and

wsðxÞ ¼ bcð1� cos kxÞ ð9Þ

for a clamped–clamped beam. Where bs and bc are two constants
defined as
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and k2 is the nondimensional first critical buckling load that is equal
to p2 for simply supported beams and 4p2 for clamped–clamped
beams. It is worth noting that the constant K vanishes for symmet-
ric laminates, as can be noted in Eq. (2).

It is important to emphasize that Eq. (1) governs only the non-
linear free vibrations of beams in the prebuckling state. To investi-
gate the nonlinear free vibrations of composite beams in
postbuckling, one needs to introduce a dynamic disturbance to
the static, buckled, equilibrium position. As such, the total trans-
verse deformation wðx; tÞ due to a dynamic deformation vðx; tÞ that
takes place around a static equilibrium position wsðxÞ can be de-
fined as

wðx; tÞ ¼ wsðxÞ þ vðx; tÞ ð12Þ

Inserting Eq. (12) into Eq. (1) yields the nondimensional equation
governing large-amplitude free vibrations of composite beams in
the postbuckling state. The result is
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In terms of v, boundary conditions of simply supported and
clamped–clamped boundary conditions are, respectively, given by

v ¼ 0 and v 00 ¼ 0 at x ¼ 0;1 ð14Þ
v ¼ 0 and v 0 ¼ 0 at x ¼ 0;1 ð15Þ

3. Linear free vibrations

3.1. Prebuckling state

The linear free vibration problem of composite beams in the
prebuckling state can be obtained from Eq. (1) by dropping the
nonlinear terms. For simply supported beams, the standard proce-
dure of solving an eigenvalue problem yields the following charac-
teristic equation:
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where xL is the linear natural frequency and k1 and k2 are two con-
stants given by
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Since xL must be positive, Eq. (16) yields k1 ¼ np, and one finds that
the linear natural frequency of the first mode is given by

x2
L ¼ p2ðp2 � PÞ ð17Þ

For clamped–clamped beams, the linear natural frequency of the
first mode can be obtained by solving the following transcendental
equation:

2k1k2ðcos k1 cosh k2 � 1Þ þ ðk1 � k2Þðk1 þ k2Þ sin k1 sinh k2 ¼ 0

ð18Þ

3.2. Postbuckling state

On the other hand, the linear free vibration problem for beams
in postbuckling can be obtained by dropping the nonlinear terms of
Eq. (13), which is exactly solved by Nayfeh and Emam [1] for
metallic beams and Emam and Nayfeh [17] for composite beams.
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