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a b s t r a c t

Eringen nonlocal theory is employed in Mindlin plate theory to consider small scale effects on free vibra-
tion of rectangular nano-plates. Introducing some auxiliary and potential functions, an exact analytical
procedure is applied on the governing equations to decouple the displacement variables. It is believed
that this method is new for solving vibration of nano-plates. The solution of natural frequencies is
obtained for Levy-type boundary conditions (two opposite edges simply supported and the others arbi-
trary). In order to confirm the reliability of the method considered, the results are compared with several
reported literature. The effect of nonlocal parameter is investigated on natural frequency of the nano-
plate for different boundary conditions. Finally the influence of aspect ratio and thickness to length ratio
on natural frequency is studied in detail. It is expected that results obtained in this paper serve as an
accurate reference in future nano-structures issues.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Among different nano-structures, one can introduce nano-
plates which concern with small scale fields. Due to the rapid
development of technology, especially in micro and nano-scale
fields, nano-plates are used in micro- or nano-electromechanical
systems (MEMS or NEMS) for their superior mechanical, thermal
and electrical properties. Dynamic behavior of nano-plates used
as thin film elements [1], two-dimensional suspended nano-struc-
tures [2,3] nano-sheet and paddle-like resonators [4,5] requires a
two-dimensional nano-structure analysis. Hence, one must con-
sider small scale effects in order to refine classical theories to de-
rive the governing equations for these structures. The scale
effects are accounted by considering internal size as a material
parameter. Experimental results show that as length scales of a
material are reduced, the influences of long-range interatomic
and intermolecular cohesive forces on the mechanical properties
become prominent and cannot be neglected. The local (classic)
continuum theory neglects the effects of long-range load on the
motion of the body and long range inter atomic interactions.
Therefore, the internal scale is neglected. Some methods like
molecular dynamics [6] are presented in recent years which con-
sider size effects and atomic lengths. Molecular dynamics models
are limited to the small number of atoms and relatively short
times. Therefore, the simulation time (cost) increases enormously

if we increase the length and the number of atoms. Nonlocal linear
theory, which has both features of lattice parameter and classical
elasticity, could be considered a superior theory for modeling
nano-materials. Nonlocal theory of Eringen [7] is one of the well-
known continuum mechanics theories to account the small scale
effect by specifying the stress at a reference point as a functional
of the strain field at every point in the body. Hence, many papers
dealt with analyzing nano-structures have been published on this
topic. Buckling and vibration analyses of carbon nano-tubes with
the help of beam and shell theories [8,9], application of nonlocal
theory for beam vibration [10] and vibration analysis of graphite
sheets using the plate theories [11] are some of the wide applica-
tion of nonlocal theory. Study of the vibration and buckling analy-
sis of nano-plates and graphene sheets can be seen in bending and
vibration of plates via nonlocal Reddy plate theory [12], CPT and
Mindlin nonlocal theory for plate vibration [13,14], free vibrations
of single-layered graphene sheets [15], buckling of graphene sheets
[16,17], vibration and buckling of nano-plates [18] and 3D vibra-
tion analysis of nano-plates [19]. But as reported in many of these
literature the solution of the governing equation are based on
numerical methods (e.g., finite element method [20], finite differ-
ence method [21], differential quadrature method [22]) and
approximate analytical methods like Navier type solution method
that assumes the variation of displacement variables harmonically
[12,13]. Furthermore, many of these solutions are concerned with
Navier boundary condition, i.e. all edges are simply supported
and a few of them consider combinations of clamed and simply
supported boundaries [18,22]. Hence, no exact closed-form
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solution is available in the literature for the free vibration analysis
of nano-plates and various Boundary conditions (BCs). According
to Hosseini-Hashemi et al. [23,24] an exact closed form solution
procedure is established for vibration of single-layered and func-
tionally graded plates based on some auxiliary and potential func-
tions. This method has just been considered for local theory and
can be applied to Levy-type support conditions and yield well con-
vergence and accurate results without any approximations. There-
fore, the main purpose of this article is to apply this exact method
to solve the governing equations of motion of nano-plate for Mind-
lin theory base on nonlocal elasticity. In this regard, the rectangu-
lar plate equations of motion for Mindlin theory are derived via
equations of momentum balance and base on nonlocal continuum
model. The equations of the problem are coupled through displace-
ment components. Introducing a set of auxiliary and potential
functions, the governing equations are decoupled for transverse
vibration analysis. By transforming the displacement variables into
known functions the problem leads to a soluble form without any
approximations. Two opposite edges are held simply supported
and the other two edges may be given any combination of free
(F), simply supported (S) and clamped (C). Applying the boundary
conditions lead to characteristic equations which result natural
frequencies accurately and analytically. In order to confirm the
reliability of the method considered, the results are compared with
several reported literature. Also, the effects of nonlocal parameter,
aspect ratio and thickness to length ratio of the plate and different
boundary conditions on non-dimensional vibration frequencies are
investigated.

2. Problem formulation

2.1. Summary of nonlocal continuum theory

As mentioned earlier in nonlocal theory the stress in a material
body point is a function of strain field of the same point and all
other ones in material domain, so the stress tensor plays the essen-
tial role in this continuum theory which is defined as [7]:

tij ¼
Z

V
aðjx0 � xjÞrijðx0ÞdV 0 ð1Þ

where the volume integral is taken over the body region V. x is the
reference point in body which the stress tensor is calculated at, x0

any other point in the body, i, j = x, y, z, for three dimensional Carte-
sian coordinate, rij is the local stress tensor and a(|x0 � x|) is non-
local kernel function depends on internal characteristic length.
Eringen proposed a(|x0 � x|) as a Green function of a linear differen-
tial operator L as:

Laðjx0 � xjÞ ¼ dðjx0 � xjÞ ð2Þ

Which after applying Eq. (2) on Eq. (1) the integral forms of
nonlocal stress tensor reduces to differential one:

Ltij ¼ rij ð3Þ

The linear operator is an approximate model of the kernel ob-
tained by matching the Fourier transforms of the kernel in the
wave number space with the dispersion curves of lattice dynamics.
For curve-fitting at low wave numbers relevant to the small inter-
nal length scale Eq. (2) is written as:

ð1� j2r2 þ l4r4 � . . .Þtij ¼ rij

So the linear operator becomes:

L ¼ ð1� j2r2 þ l4r4 � . . .Þ ð4Þ

where j and l are small parameters proportional to the internal
length scale. If first order approximation is to be considered, just
the Laplacian form of the operator in Eq. (4) is maintained [27].
So for the two-dimensional case:

L ¼ 1� ðe0lÞ2r2 ð5Þ

In which l is internal length and e0 is material constant which is de-
fined by the experiment and r2 ¼ @2

@x2 þ @2

@y2 is the two-dimensional
Laplacian operator.

Equations of motion for nonlocal linear elastic solids are ob-
tained from nonlocal balance law as:

tij;j þ pi ¼ q€ui ð6Þ

pi and ui are the components of the body force and displacement
vector respectively and q is mass density. Using Eq. (3) in Eq. (6)
the nonlocal equations of motion in differential form become:

rij;j þ Lðpi � €uiÞ ¼ 0 ð7Þ

It should be noted that the boundary conditions here are based on
nonlocal stress tensors tij rather than local ones rij [13].

Nomenclature

a, b plate length and width
t time
l internal length
e0 material constant
q mass density
h nano-plate thickness
E Young modulus of elasticity
m Poisson’s ratio
D flexural rigidity
x, y, z rectangular Cartesian coordinates
X, Y non-dimensional rectangular Cartesian coordinates
eij strain components
tij nonlocal stress tensor
rij local stress tensor
Nij nonlocal force resultants
Mij nonlocal moment resultants
pi components of body force
L linear differential operator
r2 two-dimensional Laplacian operator
~r2 non-dimensional Laplacian operator

ui components of displacement
u0

r mid-plane displacements in x- and y-directions
ur rotational displacements about the x- and y-axes
~ur non-dimensional displacements about the x- and y-axes
w lateral displacement in z-direction
~w non-dimensional lateral displacement in z-direction
j, l nonlocal parameters
f non-dimensional nonlocal parameter
nl nonlocal term
ks shear correction factor
Ik inertia terms
d thickness to length ratio
g aspect ratio (length to width ratio)
b non-dimensional frequency parameter
x frequency parameter
a(|x0 � x|) nonlocal kernel function
f(X,Y) auxiliary function
Wt(X,Y) potential functions
m, n number of half waves in x- and y-directions

Sh. Hosseini-Hashemi et al. / Composite Structures 100 (2013) 290–299 291



Download English Version:

https://daneshyari.com/en/article/251929

Download Persian Version:

https://daneshyari.com/article/251929

Daneshyari.com

https://daneshyari.com/en/article/251929
https://daneshyari.com/article/251929
https://daneshyari.com

