
Coupled free vibration of composite beams with asymmetric cross-sections

Guoyan Wang
School of Aerospace Engineering and Applied Mechanics, Tongji University, 1239 Siping Road, Shanghai 200092, People’s Republic of China

a r t i c l e i n f o

Article history:
Available online 21 January 2013

Keywords:
Coupled free vibration
Composite beams
Asymmetric cross-sections
Euler–Bernoulli beam theory

a b s t r a c t

A set of linear differential equations of motion for coupled free vibrations of composite beams with asym-
metric cross-sections is obtained in this paper based on Euler–Bernoulli beam theory. More coupling
terms are included in the governing equations; and hence, both even and odd order spatial derivatives
are included. All these features lead to much difficulty in solving the resultant equations. The axially
unloaded condition of F1 = 0, instead of e = 0, is adopted to simplify the equations of motion for the case
of inextensional beams. An algorithm is developed for solving the resultant equations to obtain natural
frequencies and modes of the beams. Numerical examples for validation show that the equations of
motion obtained in this paper are correct and the corresponding algorithm is effective and easy to use.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Composite beams are becoming common structures in modern
engineering, such as wind turbine blades and high aspect ratio
wings. A feature of these structures is that their material properties
are anisotropic and cross sections are asymmetric which means
that the elastic center and mass center of cross sections do not
coincide with each other so that Flexural–Flexural–Torsional
(F–F–T) coupled vibrations occur. This increases difficulty in vibra-
tion analysis of these structures. Besides, if the amplitudes of vibra-
tions are significant enough, geometric nonlinearities need to be
considered.

In nonlinear F–F–T coupled vibration analysis of beam struc-
tures, Crispo Der Silver and Glynn [1] first developed a set of differ-
ential equations of motion for general isotropic beams based on
three Euler angles describing the motion of the beams. Pai and
Nayfeh [2] generalized Crispo Der Silver and Glynn’s equations of
motion to composite beams. In their researches [1,2], the equations
of motion were reduced for the case of inextensional beams based
on the condition of e = 0, where e = u0 + . . ., is the axial strain of the
reference line of the beams. This implies that the elastic center and
mass center of each cross section of the beams coincide with each
other; or, the cross sections are bi-symmetric. Beran, et al. [3]
developed a set of nonlinear equations of motion for isotropic
beams with one symmetric axis in each cross section, with the ref-
erence lines coincident with the elastic centers of the beams.

The analysis of nonlinear vibrations is closely associated with
the corresponding linear vibration analysis. For example, in pertur-
bation method, the method of multiple scales, etc., linear modes
are often used for spatial discretization. In conventional nonlinear
vibration analysis, pure flexural and torsional natural modes are

used even in flexural–torsional coupled cases [4,5]. In some linear
vibration analysis, such as first order flutter analysis of high aspect
ratio wings, pure flexural and torsional natural modes are also used
in flexural–torsional coupled cases [5].

The existing solution methods of linear equations of motion for
flexural–torsional coupled vibrations can be divided into two cate-
gories. In the first category, the high order differential equations
are solved directly [6–14]. Many arbitrary constants need to be
dealt with through a complicated procedure. In order to reduce
the effort in the solution procedures, modern computer software,
such as Mathematica, has been adopted. For example, Tanaka
et al. [10] solved the final equations for natural frequencies with
the help of Mathematica. In the second category, the original high
order differential equations are transformed into a set of first order
differential equations and solved by means of conventional meth-
ods for first order ordinary differential equations (ODEs) [15,16].

In both categories above, the reference lines of the beams are
coincident with elastic axes. For the determination of natural fre-
quencies, the most adopted general algorithm is the dynamic stiff-
ness method given by Wittrick and Williams [17], wherein natural
frequencies are solved in real number domain. In these solutions,
the governing differential equations of motion include only even
order spatial derivatives, such as x00 and x00 00, and the eigenvalues
can be determined qualitatively as real numbers or pure imaginary
numbers. Therefore, the solution procedures can be conducted in
real number domain and the algorithm given by Wittrick and Wil-
liams can be adopted without difficulty. However, if the differential
equations of motion include both even and odd order spatial deriv-
atives, such as x0, x00, and x000, the eigenvalues cannot be determined
qualitatively as real numbers or pure imaginary numbers and the
conventional dynamic stiffness method may not be applied di-
rectly. It seems that a general algorithm is needed to solve such
a problem in the complex domain.
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In this paper, the nonlinear differential equations of motion
given by Nayfeh and Pai [18] are extended to the case of F–F–
T coupled vibrations of composite beams with asymmetric cross
sections; and then, a set of general linear differential equations
of motion are obtained for analyzing natural vibrations of such
beams, based on Euler–Bernoulli beam theory. The axial un-
loaded condition of F1 = 0, instead of e = 0, is used to simplify
the equations of motion for the case of inextensional beams,
where F1 is the resultant of axial stress r11 in the cross sections
of the beams. The resultant equations include both even and odd
order spatial derivatives. A unified algorithm is developed to ob-
tain natural frequencies and modes of the beams. The corre-
sponding solution procedure is conducted with the help of
Mathematica.

In order to validate the correctness of the governing equations
and the effectiveness of the algorithm developed in this paper,
three numerical examples are presented. The first one is a typical
undamped free vibration problem of a flexural–torsional-uncou-
pled isotropic cantilever beam, whose exact solutions are available.
This example is used to validate the correctness of the main feature
of the present governing equations and corresponding algorithm.
The second one is the numerical example of a composite beam pre-
sented by Pai [16]. This example is used to validate the effective-
ness of the present algorithm in composite beams. The last one is
a numerical example given by Tanaka et al. [10]. This example is
used to validate the effectiveness of the present algorithm in
beams with asymmetric cross sections. Besides, in order to com-
pare with the Tanaka’s example which includes warping effect,
the equations of motion of this paper are also extended to include
warping effect as those in [10].

2. Equations of motion

2.1. Fundamental formulation

A cantilever beam is taken as an example in deriving the
equations of motion of this paper. The results obtained in this
paper can be easily extended to beams with other boundary
conditions. Warping effect due to torsional vibration is discussed
only for the application in the last numerical example for
validation.

An initially straight beam presented in [18] is adopted in this
paper, as shown in Fig. 1a. X–Y–Z is a fixed global Cartesian
coordinate system to describe the undeformed geometry of the
beam. n–g–1 is an orthogonal curvilinear coordinate system
located in each cross section of the beam. In the undeformed state,
n-axis coincides with X-axis and they all coincide with the
reference line that passes through the elastic center of each cross
section of the beam, g-axis coincides with Y-axis, etc.

An arbitrary cross section of the beam is shown in Fig. 1b where
eg and e1 are the distances between elastic center (S) and mass
center (C) in the cross section along g, 1 directions respectively.
The beam is assumed to be an Euler–Bernoulli beam. If the warping
effect is neglected, the cross sections remain planes after deforma-
tion. u(s), v(s), w(s) are used to describe the displacements of the
reference point (that is, the elastic center) in the cross section
along X, Y, Z directions respectively, where s is the undeformed
length measured from the clamped end of the beam to the refer-
ence point of the cross section. hn(s), hg(s), h1(s) are used to describe
the rotations of the cross section about n, g, 1 axes respectively.
Only u, v, w, hn are required in deriving the equations of motion
since hg, h1 can be expressed as functions of u, v, w[18]. In this
paper, hn(s) is denoted by /(s).

In order to obtain the differential equations of motion, the fun-
damental nonlinear Eqs. (4.6.28–4.6.31) and the corresponding
boundary conditions (4.6.32a–c) in [18] are adopted in this paper.
By locating the reference line with the elastic centers of the beam
coincidently and carrying out Talyor-series expansion based on the
transformation with two Euler angles in the fundamental nonlin-
ear equations given in [18] and dropping off all nonlinear terms,
damping terms and external forces in the resultant nonlinear equa-
tions, the following 3-D linear differential equations of motion for
natural vibration analysis are obtained

m€u� J12 €w0 � J13 €v 0 �A11u00 �B11/
00 þB12w000 �B13v 000 ¼0 ð1aÞ

m€v� J12
€/þ J13€u0 � j23 €w00 � j33 €v 00 þB13u000 þD13/

000 �D23wð4Þ þD33v ð4Þ ¼0 ð1bÞ
m €wþ J12 €u0 þ J13

€/� j22 €w00 � j23 €v 00 �B12u000 �D12/
000 þD22wð4Þ �D23v ð4Þ ¼0 ð1cÞ

j11
€/� J12 €vþ J13 €w�B11u00 �D11/

00 þD12w000 �D13v 000 ¼0 ð1dÞ

where the overdot ‘�’ denotes the derivative with respect to t and the
prime ‘’’ denotes the derivative with respect to s. The coefficients in
Eq. (1) are listed in Appendix A.1. It can be seen that more inertial
and elastic coupling terms are included in Eq. (1), and both even
and odd order spatial derivatives occur in it.

For cantilever beams, the boundary conditions corresponding to
Eq. (1) can be given as follows [18].

At the clamped end (s = 0),

u ¼ v ¼ w ¼ / ¼ 0 ð2aÞ
v 0 ¼ w0 ¼ 0 ð2bÞ

At the free end (s = L, where L is the length of the beam),

M1¼B11u0 þD11/
0 �D12w00 þD13v 00 ¼0 ð3aÞ

M2¼B12u0 þD12/
0 �D22w00 þD23v 00 ¼0 ð3bÞ

M3¼B13u0 þD13/
0 �D23w00 þD33v 00 ¼0 ð3cÞ

G1¼A11u0 þB11/
0 �B12w00 þB13v 00 ¼0 ð3dÞ

G2¼�B13u00 �D13/
00 þD23w000 �D33v 000 þ j23 €w0 þ j33 €v 0 � J13€u¼0 ð3eÞ

G3¼B12u00 þD12/
00 �D22w000 þD23v 000 þ j22 €w0 þ j23 €v 0 � J12€u¼0 ð3fÞ

s

c

(a) An initially straight beam [18] (b) An arbitrary asymmetric cross section 

Fig. 1. A cantilever beam with arbitrary bi-asymmetric cross sections.
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