
Theoretical prediction on the mechanical properties of 3D braided composites
using a helix geometry model

Lili Jiang a, Tao Zeng a,⇑, Shi Yan a, Daining Fang b

a Department of Engineering Mechanics, Harbin University of Science and Technology, Harbin 150080, PR China
b Department of Mechanics and Aerospace Technology, Peking University, 100871 Beijing, PR China

a r t i c l e i n f o

Article history:
Available online 29 January 2013

Keywords:
Helix geometry model
3D braided composites
Effective elastic properties
Strength

a b s t r a c t

In our previous work, we have established a three-dimensional (3D) finite element model (FEM) which
precisely simulated the spatial configuration of the braiding yarns. This paper presents a theoretical
model based upon the helix geometry unit cell for prediction of the effective elastic constants and the
failure strength of 3D braided composites under uniaxial load through the stiffness volume average
method and Tsai-Wu polynomial failure criterion. Comparisons between the theoretical and experimen-
tal results are conducted. The theoretical results show that the braid angle has significant influences on
the mechanical properties of 3D braided composites.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

3D braided composites have been rapidly developed in the past
years due to their excellent mechanical properties, such as high
specific strength/stiffness, high through-thickness strength and
impact resistance. 3D braided composites have been widely used
in aerospace, automobile, marine and biomedical, etc. 3D braided
composites can be regarded as an assemblage of representative
volume element [1,2] that captures the major features of the
underlying microstructure and composition in the material. In
the recent years, many researchers [3–22] have been devoted to
the micro-structures and elastic properties for 3D braided compos-
ites. Kregers and Melbardis [3] presented the stiffness volume
average method to predict the macroscopic properties of 3D
braided composites. Ma et al. [4], Yang et al. [5] and Byun et al.
[6] studied the effective elastic properties of 3D braided compos-
ites by using ‘Fiber interlock model’, ‘Fiber inclination model’ and
‘fabric geometric model’, respectively. Whitcomb and Woo [7] gave
the stress distribution of woven composites using the local finite
element method. Wang and Wang [8] reported a mixed volume
averaging technique to predict the mechanical behavior of three
dimensional braided composites. Wu [9] developed a three-cell
model to predict the mechanical properties of 3D braided compos-
ites, which can be used to accurately describe the micro-structure.
Chen et al. [10] presented a finite multi-phase element model to
predict the effective properties of 3D braided composites. Sun
and Qiao [11] predicted the strength of 3D braided composites
based upon the transverse isotropy of unidirectional laminas. Fang

et al. [12] developed a mesoscopic damage model to study the fail-
ure locus of 3D braided four-directional composites under complex
loadings. Zeng et al. [13,14] investigated the effective modulus of
3D braided composites with edge and internal cracks. Gu [15]
investigated the uniaxial tensile strength of 4-step 3-dimensional
braided composites based on the energy conservation, and showed
the tensile curve within the whole strain range. Yu and Cui [16]
studied the influence of the braiding angle and the fiber volume
fraction on the strength for 4-step braided composites. Li and Shen
[17] presented thermal postbuckling analysis modeling for 3D
braided composite cylindrical shell subjected to a uniform temper-
ature rise. Recently, the finite element methods [18–23] were
extensively applied to numerically predict the average stiffness
and strength properties of 3D braided composites for their accurate
prediction. In our previous work [24], a multiphase finite element
method based on the helix geometry model has been presented to
predict the effective elastic constants and strength of 3D braided
composites under tension loading.

The present paper is concerned with the theoretical prediction
on the elastic properties and failure strength of 3D braided com-
posites using a helix geometry model. The stiffness property is first
compared with test data and the results of the previous microme-
chanical models. This study is followed by predicting the failure
strength of 3D braided composites under axial load.

2. Helix geometry model

In our previous work [24], a helix geometry model of 3D braided
composites has been presented. A unit cell for the helix geometry
model of 3D braided composites is shown in Fig. 1. Four yarns in
the helix geometry model are curved to avoid the collision at the

0263-8223/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compstruct.2013.01.016

⇑ Corresponding author. Tel.: +86 451 86390832; fax: +86 451 86390830.
E-mail addresses: taozeng@sohu.com, taozeng@hrbust.edu.cn (T. Zeng).

Composite Structures 100 (2013) 511–516

Contents lists available at SciVerse ScienceDirect

Composite Structures

journal homepage: www.elsevier .com/locate /compstruct

http://dx.doi.org/10.1016/j.compstruct.2013.01.016
mailto:taozeng@sohu.com
mailto:taozeng@hrbust.edu.cn
http://dx.doi.org/10.1016/j.compstruct.2013.01.016
http://www.sciencedirect.com/science/journal/02638223
http://www.elsevier.com/locate/compstruct


center of the unit-cell, which truly reflects the braided manner and
coincides with the actual configuration of the braided composites.
Three coordinate systems have been employed in this study, which
are: (1) a global coordinate system (x, y, z) with axes aligned paral-
lel to the unit cell axes, (2) a local coordinate system (x0, y0, z0) with
its origin C at the midpoint of the diagonal of the unit cell (x0-axis:
the diagonal direction of unit cell); (3) a local coordinate system
(1, 2, 3) with its primary axis parallels to the central axis of the
yarn. The local system (1, 2, 3) changes from point to point on a
yarn as well as from yarn to yarn. U, V and L refer to the dimensions
of the unit cell in x, y and z directions. In order to describe the spa-
tial location of the yarns in the unit cell, the curvature of each yarn
should be determined. The center line of the braiding yarns is a
parabola defined by the two yarn end points (located on the
respective top and bottom surfaces of the unit cell) and the mid-
point of the yarn (located on the mid-plane between the top and
bottom surfaces), as shown in Fig. 1b.

The center line of the braiding yarns in the local coordinate sys-
tems (x0, y0, z0) can be formulated as

y0 ¼ c1 þ c2x0 þ c3x02

z0 ¼ 0

(
ð1Þ

where c1, c2, c3 can be determined by the two end points and the
midpoint of the yarn.

The center line of the braiding yarns in the global coordinate
systems (x, y, z) can be obtained by coordinate transformation

x0

y0

z0

8><
>:

9>=
>; ¼

l1 l2 l3

m1 m2 m3

n1 n2 n3

2
64

3
75

x� U
2

y� V
2

z� L
2

8><
>:

9>=
>; ð2Þ

where (li, mi, ni) (i = 1, 2, 3) are the direction cosines between the lo-
cal coordinate system (x0, y0, z0) and the global coordinate system
(x, y, z).

Substituting Eq. (2) into Eq. (1), the equation of the center line
of the braiding yarns in the global coordinate system can be ob-
tained as

x ¼ f1ðzÞ
y ¼ f2ðzÞ

�
0 6 z 6 L ð3Þ

The expressions of f1(z) and h(z) are listed in Appendix A.
In Fig. 1c, h(z) is the angle between the tangent of the yarn axis

and z-axis and b(z) is the angle between the projection of yarn axis
on the xoy plane and x-axis, given by:

hðzÞ ¼ arccos
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dx
dz

� �2 þ dy
dz

� �2
þ 1

r ð4aÞ

bðzÞ ¼ arctan
dy
dx

� 	
ð4bÞ

3. Prediction of effective elastic constants

The basic assumption in the present analysis is that the yarns
(Fig. 1d) are considered unidirectional composite rods after resin
impregnation. A yarn was cut into a few small pieces along the
braiding axis z so that the yarns segment in each small piece was
assumed to be straight. Each small piece was treated as a trans-
versely isotropic composite with local coordinate system along
its yarn segment. The stiffness matrix of each yarn segment in

Fig. 1. Helix geometry model.
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