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a b s t r a c t

In this work an innovative numerical approach, combining the simplicity of low-order finite elements
connectivity with the geometric flexibility of meshless methods, is extended to the elastostatic analysis
of composite laminated plates. The Voronoï diagram geometric concept is used to enforce the nodal con-
nectivity and the background integration mesh is constructed uniquely dependent on the computational
nodal mesh through the application of the Delaunay triangulation. With the proposed numerical method,
the nodal connectivity is imposed through nodal sets with reduced size, reducing significantly the test
function construction cost. The interpolations functions are constructed using Euclidian norms and easily
obtained. In this work it is considered the first-order plate shear deformation theory. To prove the good
behaviour of the proposed interpolation function elastostatic composite laminated plate benchmark
examples are solved.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Within the scientific community, the FEM [1] is a well imple-
mented numerical method, successfully applied to solve a variety
of problems in engineering. However the dependence on the com-
putational mesh leads to some limitations, such as the high errors
and lost of accuracy verified with the excessive element distortion
and/or the solid domain complex geometries. With the objective of
eliminating part of the finite element method (FEM) shortcomings,
several meshless methods [2,3] were developed in the recent years.

In meshless methods the problem domain can be discretized in
a randomly distributed nodal mesh, since meshless methods
approximate (or interpolate) the field functions within a flexible
influence domain instead of an element as in the FEM. It is the
overlap of the interest points influence domains that permits to
impose the nodal connectivity and define the field function appli-
cability space.

Several meshless methods were applied with strong form solu-
tions in solid mechanics [4,5], however the present work aims to
apply the meshless formulation to the weak form solution since
it is more flexible and wide. Being the solution obtained based in
the weak formulation meshless methods can be divided in two

classes, the approximants meshless methods and the interpolants
meshless methods.

Regarding meshless methods with approximation functions, the
smooth particle hydrodynamics (SPH) [6], based in the kernel esti-
mation [7], was one of the first to be developed. The diffuse ele-
ment method (DEM) [8] was the first to use the moving least
square approximants in the construction of the approximation
function, initially it was proposed for surface fitting [9]. Latter
the DEM was improved and consequently the element free Galer-
kin method (EFGM) was developed [10]. With the introduction of
a correction function for the kernel approximation on the SPH,
the reproducing kernel particle method [11] was developed, and
in the same period the meshless local Petrov–Galerkin method
(MLPG) [12] was presented.

One of the major disadvantage of approximation meshless
methods is the lack of the delta Kronecker property, difficulting
the imposition of essential and natural boundary conditions.
Therefore the scientific community started to research and to de-
velop meshless methods using interpolation functions. One of the
most popular interpolator meshless method is the natural element
method (NEM) [13,14], which uses the Sibson interpolation func-
tions and the Voronoï diagram to impose the nodal connectivity.

Based only on a group of arbitrarily distributed points, the Point
Interpolation Method (PIM) [15] constructs a polynomial interpo-
lation with Kronecker delta function property. Later, the addition
of a radial basis functions to the basis of the interpolation functions
permitted to develop the Radial Point Interpolation Method (RPIM)
[16]. More recently, using the advantages of the natural neighbours
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on the imposition of nodal connectivity and the radial point inter-
polator technique, it was developed the natural neighbour radial
point interpolation method (NNRPIM) [17].

In this work a new meshless method, the Natural Radial Ele-
ment Method (NREM), is extended to the analysis of composite
laminated plates. The main advantage of this numerical approach
is the combination between the connectivity simplicity of a low-
order finite element and the geometric flexibility of a meshless
method. The Voronoï diagram [18] concept is used to obtain the
NREM nodal connectivity and to establish the Voronoï cells. Then,
using the Delaunay triangulation [19], the integration mesh is con-
structed. With the NREM the integration mesh is completely
dependent on the nodal mesh, permitting to classify the NREM
as a truly meshless method. This NREM feature permits to define
uniquely the computational nodal mesh discretizing the problem
domain, and then using well-known mathematical and geometri-
cal concepts the integration mesh is automatically defined, with-
out requiring any additional information or interference from the
user. Using the Delaunay triangulation small size influence-do-
mains are determined, each one with only n = d + 1 nodes, being
d the problem domain dimension, X � Rd.

The Euclidean norm basis function (ENBF) is applied to con-
struct the NREM interpolation functions, used as trial functions
in the Galerkin weak form. The interpolation function construction
process is very similar with the radial point interpolators [16,17],
however the ENBF does not require any shape parameter as the ra-
dial basis functions used in [16,17].

The NREM extension to the analysis of laminated composite
plates is performed considering the first order plate shear deforma-
tion theory (FSDT) presented in the early works of Reissner [20]
and Mindlin [21], which assumes first order displacement func-
tions and considers a shear correction factor for attenuating the
non-zero transverse shear strain on the top and bottom surfaces.
In [22] a review on the developments of meshless methods and
their applications in the analysis of composite structures is pre-
sented. One of the first works to extend meshless methods to the
analysis of plates considering the FSDT was the work of Donning
and Liu [23]. Since then this solid mechanics problem was analysed
by other meshless methods [24–28], in which techniques to avoid
the shear-locking phenomenon are extensively described. In the
work of Liew et al. [29] laminated composite plates and beams
were analysed using the EFGM. Also considering the EFGM, Belinha
and Dinis [30,31] presented a non-linear analysis for plates and
composite laminates.

This work is divided in five sections. In Section 2 the NREM is
presented, the nodal connectivity and the integration mesh deter-
mination are described, as well as the NREM interpolation function
construction. The Galerkin weak form considering the FSDT for the
NREM formulation is presented in Section 3, along with the matri-
cial procedure to obtain the equilibrium equation system. In Sec-
tion 4 linear elastostatic composite laminated plate benchmark
examples are solved and the obtained NREM solution is compared
with other numerical methods and the available exact solution. A
comparison between the computational effort of the NREM and
other numerical method is also presented. The work ends with
the conclusions and remarks in Section 5.

2. Natural radial element method

In this section the NREM nodal connectivity and the NREM
background integration mesh construction are explained. Next, a
detailed description of the construction of the proposed NREM
interpolation functions is presented.

The natural neighbours mathematical concept was firstly intro-
duced by Sibson [32] for data fitting and field smoothing. In this

work this concept is used to enforce the nodal connectivity. Con-
sider the nodal set N = {n1,n2, . . . , nN} discretizing the space do-
main X � R2 in X = {x1,x2, . . . , xN} 2X. The Voronoï diagram of N
is the partition of the function space discretized by X in sub-re-
gions Vi, closed and convex, Fig. 1a. Each sub-region Vi is associated
to the node ni in a way that any point in the interior of Vi is closer to
ni than any other node nj 2 N ^ j – i. The set of Voronoï cells V de-
fines the Voronoï diagram, V = {V1,V2, . . . , VN}. The Voronoï cell is
defined by, Vi :¼ fxI 2 X � R2 : kxI � xik < kxI � xjk;8i – jg, being
xI an interest point of the domain and k � k the Euclidian metric
norm. Thus a Voronoï cell Vi is the geometric place where all points
are closer to ni than to any other node. The Voronoï diagrams
implications are extensive, with applications from the natural sci-
ences to engineering. A detailed description of the properties and
applications of Voronoï diagrams can be found in [33,34] and effi-
cient algorithms to construct Voronoï tessellations are available in
[35].

The geometrical dual of the Voronoï diagram is the Delaunay
triangulation, which can be obtained by connecting the nodes from
Voronoï cells that have common boundaries. The duality between
the Voronoï diagram and the Delaunay triangulation implies that a
Delaunay edge exists between two nodes in the plane if and only if
their Voronoï cells share a common edge. It is the Delaunay prop-
erty on Voronoï diagrams that permits to construct an integration
mesh completely dependent on the nodal mesh discretizing the
problem domain.

2.1. Integration mesh

To obtain the elastostatic displacement solution, the NREM uses
the weak form of Galerkin to construct the discrete system of equa-
tions. Therefore, in order to numerically integrate the equilibrium
equations governing the studied physic phenomenon it is required
a background integration mesh. Using the Voronoï diagram, of the
discretized domain, the integration mesh is constructed, com-
pletely dependent on the nodal mesh discretizing the problem do-
main. With the Voronoï cells determined and the natural
neighbours of each node defined is possible to construct an inte-
gration mesh [17]. Considering the Voronoï cell V8, represented
in Fig. 1b, formed by the nodal set {n6 n7 n9 n13 n14} extracted from
discretized domain X � R2 in Fig. 1a. It is possible to divide the
Voronoï cell Vi in n partitions Ai

I � Vi � X, being n the total number
of natural neighbours of ni and

Sn
I¼iA

i
I ¼ Vi. For each partition Ai

I one
integration point is determined xI, Fig. 1b. The geometric place of xI

is the barycentre of the partition Ai
I and the integration weight of xI

is obtained with wi
I ¼

R
Ai

I
dX. Repeating the proposed procedure for

all the Voronoï cells in the Voronoï diagram it is possible to obtain
an integration mesh Q = {q1,q2, . . . , qQ} 2X with qI 2 R2 andPQ

I¼1wI ¼
R

X dX. A detailed description of this procedure can be
found in the literature [17].

In addition to the integration scheme presented above, in this
work another integration procedure is proposed. Instead of consid-
ering the geometric place of each interest point xI in the barycentre
of the partition Ai

I , each interest point is considered coincident with
the nearest node. For this case, considering the nodal set presented
in Fig. 1b, xI = xn8. To identify this numerical integration procedure
the expression ‘‘non-centred integration’’ is used. It was found that
with this integration scheme the NREM convergence rate and accu-
racy were significantly increased and the shear-locking phenome-
non was strongly attenuated.

2.2. Nodal connectivity

In the majority of meshless methods, the most common proce-
dure to impose the nodal connectivity is with the overlap of the
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