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a b s t r a c t

In this article, we combine Carrera’s Unified Formulation (CUF) [13,7] and cell based smoothed finite ele-
ment method [28] for studying the static bending and the free vibration of thin and thick laminated
plates. A 4-noded quadrilateral element based on the field consistency requirement is used for this study
to suppress the shear locking phenomenon. The combination of cell based smoothed finite element
method and field consistent approach with CUF allows a very accurate prediction of field variables.
The accuracy and efficiency of the proposed approach are demonstrated through numerical experiments.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

With the rapid development of engineering, there is an increas-
ing demand for new materials suited for harsh working environ-
ments. Engineered materials such as composite materials are
used in the construction of aeronautical and aerospace vehicles,
as well as civil and mechanical structures. This is because of their
excellent strength-to and stiffness-to-weight ratios and the possi-
bility of tailoring their properties to optimize the structural re-
sponse. However, the analysis of such structures is a complex
task, compared with conventional single layer metallic structures.
This is because of coupling between membrane, torsion and bend-
ing strains; weak transverse shear rigidities; and discontinuity of
the mechanical characteristics through the thickness of the lami-
nates. For these reasons, accurate modeling and simulating the
characteristics of composite structures through different higher-
order displacement functions for two-dimensional theories is tak-
ing an important part of mechanics and materials research. Indeed
two dimensional theories lead to much less expensive models
compared to three-dimensional theories. In this context, analyti-
cal/numerical methods based on various 2D higher-order theories
for static and dynamic analyses of rectangular laminates have been
the subject of increasing attention in the research community.

Various structural theories proposed for evaluating the charac-
teristics of composite laminates under different loading situations
were reviewed by [38,29,19] and recently by Khanda et al. [21]. In
general, three different approaches have been used to study lami-
nated composite structures: single layer theories, discrete layer
theories and mixed plate theory. In the single layer theory ap-
proach, layers in laminated composites are assumed to be one
equivalent single layer (ESL), whereas in the discrete layer theory
approach, each layer is considered in the analysis. Although the
discrete layer theories provide very accurate prediction of the dis-
placements and the stresses, increasing the number of layers in-
creases the number of unknowns. This can be prohibitively costly
and significantly increase the computational time [48]. To over-
come the above limitation, zig–zag models developed by Muruka-
mi [30] can satisfy the transverse shear stresses continuity
conditions at the interfaces. Moreover, the number of unknowns
are independent of the number of layers. Reddy and Robbins [42]
presented a review of various equivalent-single-layer and layer-
wise laminated plate theories and their finite element models.

Recently, some researchers have attempted to combine single
layer theories and discrete layer theories to overcome the limita-
tions of each one. Carrera [13,31,7] derived a series of axiomatic
approaches, coined as ‘Carrera Unified Formulation’ (CUF) for the
general description of two-dimensional formulations for multilay-
ered plates and shells. With this unified formulation it is possible
to implement in a single software a series of hierarchical formula-
tions, thus affording a systematic assessment of different theories,
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ranging from simple ESL models up to higher order layerwise
descriptions. This formulation is a valuable tool for gaining a deep
insight into the complex mechanics of laminated structures.

The CUF has been used to develop discrete models such as the
finite element method (FEM) [13,31], and more recently, meshless
methods based upon collocation with radial basis functions [16].
Although the FEM provides a general and systematic technique
for constructing basis functions, difficulties still exist in the devel-
opment of plate elements based on shear deformation theories,
one of which is the shear locking phenomenon. Different tech-
niques by which the locking phenomena can be suppressed in-
clude: (a) retain the original interpolations and use an optimal
integration rule [18]; (b) assumed natural strain method [1,45]
and (c) enhanced assumed strain method [44]. Recently, Cinefra
et al. employed mixed interpolation of tensorial components
(MITC) technique for 4-noded [8] and 9-noded [10–12] multilay-
ered shell/plate elements formulated on the basis of CUF.

Another set of methods have emerged to address the shear lock-
ing in the FEM. By incorporating the strain smoothing technique
into the finite element method (FEM), Liu et al. [28] have formu-
lated a series of smoothed finite element methods (SFEMs), named
as cell-based SFEM (CS-FEM) [34,4], node-based SFEM [26], edge-
based SFEM [25], face-based SFEM [33] and a-FEM [24]. And re-
cently, edge based imbricate finite element method (EI-FEM) was
proposed in [9] that shares common features with the ES-FEM.
As the SFEM can be recast within a Hellinger–Reissner variational
principle, suitable choices of the assumed strain/gradient space
provides stable solutions. Depending on the number and geometry
of the subcells used, a spectrum of methods exhibiting a spectrum
of properties is obtained. Interested are referred to the literature
[27,34] and references therein. Nguyen-Xuan et al. [37] employed
CS-FEM for Mindlin–Reissner plates. The curvature at each point
is obtained by a non-local approximation via a smoothing function.
From the numerical studies presented, it was concluded that the
CS-FEM technique is robust, computationally inexpensive, free of
locking and importantly insensitive to mesh distortions. The SFEM
was extended to various problems such as shells [35], heat transfer
[49], fracture mechanics [36] and structural acoustics [17] among
others. In [3], CS-FEM has been combined with the extended FEM
to address problems involving discontinuities.

In this study, a Co 4-noded quadrilateral element is employed to
study the static bending and free vibration of laminated compos-
ites. The plate kinematics is based on Carrera Unified Formulation
(CUF) and a sinusoidal shear deformation theory is used to approx-
imate the displacements. A CS-FEM with field consistency ap-
proach is employed to study the response of laminated
composites. The influence of various parameters, viz., the thickness
of the plate, the fiber orientation, the ply lay up and the material
properties on the response of the laminated composite plates is
studied numerically.

The paper is organized as follows. Section 2 presents an over-
view of the Unified Formulation, the finite element discretization
and the cell-based smoothing technique for implementation of
the CUF. A discussion on computing the fundamental nuclei is also
given. The results of the present formulation are compared with
those available in the literature in Section 3, bringing out the influ-
ence of various parameters on the static bending and the natural
frequencies, followed by concluding remarks in the last section.

2. Carrera unified formulation

2.1. Basis of CUF

Let us consider a laminated plate composed of perfectly bonded
layers with coordinates x, y along the in-plane directions and z

along the thickness direction of the whole plate, while zk is the
thickness of the kth layer. The CUF is a useful tool to implement
a large number of two-dimensional models with the description
at the layer level as the starting point. By following the axiomatic
modeling approach, the displacements u(x,y,z) = (u(x,y,z), v(x,y,z),
w(x,y,z)) are written according to the general expansion as:

uðx; y; zÞ ¼
XN

s¼0

FsðzÞusðx; yÞ ð1Þ

where F(z) are known functions to model the thickness distribution
of the unknowns, N is the order of the expansion assumed for the
through-thickness behavior. By varying the free parameter N, a hier-
archical series of two-dimensional models can be obtained. The
strains are related to the displacement field via the geometrical
relations:

epG ¼ exx eyy cxy

� �T ¼ Dpu

enG ¼ cxz cyz ezz
� �T ¼ ðDnp þ DnzÞu

ð2Þ

where the subscript G indicate the geometrical equations, Dp, Dnp

and Dnz are differential operators given by:

Dp ¼
@x 0 0
0 @y 0
@y @x 0

264
375; Dnp ¼

0 0 @x

0 0 @y

0 0 0

264
375; Dnz ¼

@z 0 0
0 @z 0
0 0 @z

264
375:
ð3Þ

The 3D constitutive equations are given as:

rpC ¼ CppepG þ CpnenG

rnC ¼ CnpepG þ CnnenG
ð4Þ

with

Cpp ¼
C11 C12 C16

C12 C22 C26

C16 C26 C66

264
375Cpn ¼

0 0 C13

0 0 C23

0 0 C36

264
375

Cnp ¼
0 0 0
0 0 0

C13 C23 C36

264
375Cnn ¼

C55 C45 0
C45 C44 0
0 0 C33

264
375 ð5Þ

where the subscript C indicate the constitutive equations. The Prin-
ciple of Virtual Displacements (PVDs) in case of multilayered plate
subjected to mechanical loads is written as:

XNk

k¼1

Z
Xk

Z
Ak

dek
pG

� �T
rk

pC þ dek
nG

� �T
rk

nC

� 	
dXkdz

¼
XNk

k¼1

Z
Xk

Z
Ak

qkdukT

s
€ukdXk dzþ

XNk

k¼1

dLk
e ð6Þ

where qk is the mass density of the kth layer, Xk, Ak are the integra-
tion domain in the (x,y) and the z direction, respectively. Upon
substituting the geometric relations (Eq. (2)), the constitutive rela-
tions (Eq. (4)) and the unified formulation into the PVD statement,
we have:Z
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Z
Ak
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s

� �T
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ppDk
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pn Dk
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nz
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Z
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s
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XNk

k¼1

dLk
e ð7Þ

After integration by parts, the governing equations for the plate
are obtained:
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