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a b s t r a c t

The present work deals with the flexural behavior of thin skew sandwich plates, with different types of
facings, subjected to transverse static and dynamic loadings. Based on higher order shear deformation
theory and von-Karman’s non-linearity, the equations of motion are derived using Hamilton’s principle.
Transformation from physical to computational domain is carried out using linear transformation and
chain rule of differentiation. Fast converging finite double Chebyshev series and Houbolt time marching
scheme are used for spatial and temporal discretizations, respectively. Quadratic extrapolation technique
is used for linearization of the equations of motion. The effect of skew angle, core thickness, lamination
scheme and material properties on the static and dynamic behavior of skew sandwich plate is presented.
Transient response of skew sandwich plates subjected to short duration pulse loadings is also obtained.

� 2013 Elsevier Ltd.. All rights reserved.

1. Introduction

The need for high performance and low weight plate/panel
structures in aerospace, marine and other engineering structures
necessitates the use of sandwich constructions. The analysis of
rectangular sandwich plates has drawn a great deal of attention
from the research community [1–3]. The behavior of sandwich
plates has been analyzed by using different theories e.g. equivalent
single layer theories, layer wise theories, refined theories etc. The
major problem in the analysis of these structures arises due to var-
iation of in-plane displacement across the thickness and transverse
shear strain discontinuity at the boundaries of core and face due to
significant difference in transverse shear properties and thickness
of the layers. Even higher order shear deformation theories fail to
predict the accurate behavior of these types of thick panels. How-
ever global higher order theories can be used for the analysis of
thin sandwich plates, minimizing the computational cost.

Other than rectangular shapes, skew plates are used extensively
in civil, aerospace, naval and other industries. The analysis of skew
plates becomes more complicated because of the involvement of
the oblique boundaries as well as the coupling among the stiffness
coefficients. Different methods have been employed to analyze the
behavior of multilayered skew plate’s e.g. Finite element method
[4], Differential quadrature method [5], Ritz method [6] etc. A ser-
ies based solution for the static analysis of parallelogram shaped
sandwich plates was presented by Kennedy [7]. Monforton and
Michail [8] and Ng and Kwok [9] used finite element method to

analyze skew sandwich plates. Rao and Valsarajan [10] presented
the finite deflection analysis of clamped skew sandwich plates
using Galerkin’s method. Rao and Valsarajan [11] obtained the re-
sults for large deformation of clamped skew sandwich plates using
parametric differentiation technique. Using finite element
displacement model, Ng and Lam [12] obtained the static and free
vibration response of clamped and simply supported skew sand-
wich plates. Ng and Das [13] obtained the large deflection behavior
of clamped skew sandwich plates using Galerkin’s method in con-
junction with Newton-Raphson technique. Rao and Valsarajan [14]
analyzed the large deflection behavior of skew sandwich plates
using integral equation approach. Employing the Galerkin’s meth-
od, Ng and Das [15] obtained the buckling and free vibration re-
sponse of clamped skew sandwich plates. Qin [16] obtained the
non-linear response of skew sandwich plates using boundary ele-
ment method. Ray et.al. [17] obtained the non-linear static and dy-
namic behavior of freely supported skew sandwich plates using
Banerjee’s hypothesis. Qin and Diao [18] obtained the solution
for clamped skew sandwich plate resting on elastic foundation
using hybrid-Trefftz p-element. Wang et.al. [19] obtained the free
vibration response of skew sandwich plates with orthotropic core
and laminated facings using p-Ritz method. Makhecha et.al. [20]
obtained the finite element based transient response of thick skew
sandwich laminated plates subjected to mechanical and thermal
loads using higher order shear deformation theory. Chakrabarti
and Sheikh [21] presented the bending response of sandwich
plates with laminated facings using refined plate theory and finite
element method. They also presented the linear static results for
clamped and simply supported skew sandwich plates. Garg et.al.
[22] presented free vibration response of skew sandwich laminates
using higher order shear deformation theory and finite element
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method. Park et.al. [23] obtained the dynamic response of skew
sandwich plates using higher order shear deformation theory.

From the literature, it is observed that most of the work is re-
lated to the analysis of skew sandwich plates using numerical tech-
niques. Limited attention is paid to study the non-linear
displacement response of skew sandwich plates using analytical
or semi analytical tools. In the present work, non-linear static
and dynamic response of skew sandwich plates with or without
laminated facings is presented. Using higher order shear deforma-
tion theory and von-Karman’s non-linearity, the equations of mo-
tion are derived. These equations are then transformed from
physical to computational domain using linear transformation
and chain rule of differentiation. Fast converging finite double
Chebyshev series and Houbolt time marching scheme are used
for spatial and temporal discretizations, respectively. The non-lin-
ear terms are linearized using quadratic extrapolation technique.
Effect of core to face thickness, skin to core material property ratio,
skew angle and lamination scheme on the flexural response of
skew sandwich plates are studied. The dynamic analysis is carried
out for different types of loading conditions including short dura-
tion pulses.

2. Mathematical formulation

Based on HSDT with cubic variation of in-plane displacements
through the thickness and constant transverse displacement, the
displacement field at a point in the plate is expressed as [24];

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zwxðx; y; tÞ þ z2u1ðx; y; tÞ þ z3/xðx; y; tÞ
vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ zwyðx; y; tÞ þ z2v1ðx; y; tÞ þ z3/yðx; y; tÞ
wðx; y; z; tÞ ¼ w0ðx; y; tÞ

ð1Þ

Where, u0, v0 are the in-plane displacements and w0 is the trans-
verse displacement of a point (x, y) on the middle plane of the plate,
respectively. The functions wx and wy are rotations of the normal to
the middle plane about y and x axes, respectively. The parameters
u1, v1, /x and /y are the higher order terms in the Taylor’s series
expansion, representing higher-order transverse cross-sectional
deformation modes.

The stress-strain relations for kth layer in the sandwich plate
are written as;
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where Qij for i, j = 1, 2, 4, 5, 6 are transformed reduced stiffness coef-
ficients. Employing von-Karman non-linear kinematics and using
the displacement field in Eq. (1), strain-displacement relations are
expressed as;
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where

eo
x ¼ uo;x þ 0:5ðwo;xÞ2; eo

y ¼ vo;y þ 0:5ðwo;yÞ2;

co
xy ¼ uo;y þ vo;x þwo;xwo;y

co
yz ¼ wy þwo;y; co

xz ¼ wx þwo;x; jx ¼ wx;x; jy ¼ wy;y;

jxy ¼ wx;y þ wy;x

e1
x ¼ u1;x; e1

y ¼ v1;y; c1
xy ¼ u1;y þ v1;x; j1

x ¼ /x;x; j1
y ¼ /y;y;

j1
xy ¼ /x;y þ /y;x ð3:2Þ

The in-plane stress and moment resultants are expressed as:
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Transverse shear stress resultants are written as:
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Where,

½N� ¼ Nx Ny Nxy½ �T ; ½M� ¼ Mx My Mxy½ �T
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½A�; ½B�; ½D�; ½E�; ½F�; ½H�; ½J�; ½A�; ½B�; ½D�; ½E�; ½F�, the plate stiffness
coefficients matrices are defined as:
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The governing equations of motion are obtained using the Hamil-
ton’s principle and expressed as:
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where ðI1; I2; I3; I4; I5; I6; I7Þ ¼
R h=2
�h=2 qðzÞð1; z; z2; z3; z4; z5; z6Þdz are the

inertia coefficients.
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