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a b s t r a c t

A forced vibration analysis of functionally graded (FG) nanobeams is considered based on the nonlocal
elasticity theory. The solution is obtained by using Navier method for various shear deformation theories.
The material properties of the FG nanobeam vary through the thickness direction according to a simple
power law. Effects of the nonlocal parameter, different material composition and length-to-thickness
ratio of considered element on the vibration and the effect of frequency ratio and different dynamic load-
ing conditions on dimensionless maximum deflection and mode shapes of FG nanobeam are investigated.
As a result the dynamic behavior of the FG nanobeam is influenced by the nonlocal effects. The dynamic
deflections obtained by the classical (local) theory are smaller than obtained by the nonlocal theory due
to the nonlocal effects.
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1. Introduction

The free vibration analysis of structural elements is a common
study as important as among all engineering problems and knowl-
edge of the natural frequencies suggests the designer avoid the
peak resonances which occur nearby the natural frequencies [1].
Also, dynamic systems are often subjected to time-dependent
external forces leading to the forced vibration whose amplitude
depends on the frequency ratio. If the frequency of the external
force coincides with one of the natural frequencies of considered
element such as strings, rods, membranes, beams, plates and
shells, resonance occurs, which leads to dangerously large oscilla-
tions. Hence, in the case of forced vibration it is important to know

the behavior of considered element nearby the resonance condi-
tion. This view constitutes the main object of this study.

The carbon nanotubes (CNTs) are invented by Ijima [2]. The
studies related with CNTs show that these structures have good
mechanical properties [3–7]. Hence nanostructures attract great
attention by researchers based on molecular dynamics and contin-
uum mechanics. However, due to large number of equations in the
molecular dynamics, the nonlocal theory of Eringen [8–11] which is
one of the size-dependent continuum mechanics models is widely
used, recently. Also, this theory provides to solution of problems
which include the large nano-scale structures. The theory assumes
that the stress at a point is a function of strains not only at that point
as in the classical elasticity but also at all points in the continuum.
Meanwhile, nonlocal theories consider the forces between atoms
and the internal length scale which is in the constitutive equations
as a material parameter [12]. Due to the difficulties in the molecular
dynamics, the nonlocal theory of Eringen is preferred by some of
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researchers to investigate the elastic behaviors of single walled,
double walled and multi-walled CNTs like static [13–18], buckling
[19–28], free vibration [29–36] wave propagation [37–40] and force
vibration analysis [41,42]. Also, in some of the studies related with
CNTs, these structures are assumed as a cylindrical shell model and
as a beam model [43–47]. Vibration of CNTs embedded in an elastic
medium was considered by some researchers [48–51] and axial
vibration of CNTs was investigated by some researchers [52–55]
with the nonlocal theory of Eringen. Filiz and Aydogdu [56] investi-
gated the small scale effects on axial vibrations of heterojunction
CNTs based on the local and nonlocal rod theories. Simsek [57]
solved the free longitudinal vibration of axially FG tapered nano-
rods with nonlocal effects.

Reddy and Pang [58] reformulated the Euler–Bernoulli and Tim-
oshenko beam theories using the nonlocal differential constitutive
relations of Eringen. Numerical results were presented to bring out
the effect of nonlocal behaviors on deflections, buckling loads and
natural frequencies of CNTs. Nonlocal results for bending, buckling
and vibration of nanobeams were obtained by Reddy [59] applying
Euler–Bernoulli, Timoshenko, Reddy and Levinson beam theories,
by Aydogdu [60] applying a generalized nonlocal beam theory,
by Thai [61] applying a refined theory, by Thai and Vo [62] apply-
ing a nonlocal sinusoidal shear deformation theory of Touratier
[63]. Eltaher et al. [64] investigated free vibration of nanobeams
using finite element method. Free vibration analysis and static
and stability analysis of FG size-dependent nanobeams were pre-
sented by Eltaher et al. [65] using finite element method. Free
and forced axial vibrations of damped nonlocal rods were investi-
gated by Adhikari et al. [66]. A frequency-dependent dynamic fi-
nite element method was developed to obtain the forced
vibration response. Simsek and Yurtcu [67] presented static bend-
ing and buckling of FG nanobeams using nonlocal Timoshenko
beam theory. Also, Simsek and Kocatürk [68] considered the forced
vibration of FG nanobeam which occurs due to a moving harmonic
load using classical elasticity and Simsek [69] considered the
forced vibration of single-walled CNTs using nonlocal elasticity
theory. According to these results, dynamic deflection of these
structures increases with increasing nonlocal parameter.

Aksencer and Aydogdu [70,71] investigated the nonlocal effects
on free vibration and buckling and forced vibration of nanoplates
with analytical solution. The results show that the dynamic behav-
ior of the nanoplates is greatly influenced by the nonlocal effects.
The dynamic deflections predicted by the classical theory are al-
ways smaller than those predicted by the nonlocal theory due to
the nonlocal effects.

In this study, analytical solutions of free and forced vibration of
FG nanobeams are presented using generalized beam theory. The
effects of the material composition (p index), the length-to-thick-
ness ratio (L/h) and frequency ratio (Dr) on the vibration frequency
of considered nanobeam with different loading conditions are
investigated. The mode shapes giving information for geometrical
character of the vibration behavior are plotted for considered
nanobeams.

2. Nonlocal formulation of FG nanobeams

Nonlocal elasticity theory which overcomes in cases that insuf-
ficient of classical elasticity is developed by Eringen. According to
nonlocal elasticity theory, differently from the classical elasticity
theory the stress field at a point x in an elastic continuum not only
depends on the strain field at the same point but also on strains at
all other points of the body. The linear constitutive equation of the
nonlocal, anisotropic elastic solid is expressed as follows

rkl ¼
Z
V

kijklðx0; xÞeijðx0Þdt0 ð1Þ

For the homogeneous media, kijkl is symmetric function of x0 � x, e.g.

kijkl ¼ kijklðx0 � xÞ ¼ kijklðx� x0Þ ¼ kjiklðx0 � xÞ ¼ kijlkðx0 � xÞ ð2Þ

And for homogeneous and isotropic solids it is isotropic function of
j = x0 � x, i.e.

kijkl ¼ kdijdkl þ lðdikdjl þ dildjkÞ þ k1ðjijjdkl þ jkjldijÞ
þ k1jijjjkjl ð3Þ

where the material moduli k, l, k1, and k2 are functions of
j = jjj = jx0 � xj, e.g.

k ¼ kðjx0 � xjÞ ð4Þ

Hence, the constitutive equation of the nonlocal, isotropic elastic
solid is expressed as follows:

rkl ¼
Z
V
½kðjx0 � xjÞerrðx0Þdkl þ 2lðjx0 � xjÞerrðx0Þeklðx0Þ�dt0 ð5Þ

These constitutive equations corresponds to the constitutive equa-
tions of the classical (local) elasticity, by letting

fkðjÞ;lðjÞg ! fk0;l0gdðjÞ ð6Þ

where d(j) is the Dirac-delta measure.
Due to the interatomic attractions die out with distance, the

material functions k and l must attenuate rapidly with distance,
i.e.

lim
j!1
fkðjÞ;lðjÞg ! 0 ð7Þ

For simplification we assume that the degree of attenuation for all
material moduli is the same, i.e.

kðjx0 � xjÞ
k0

¼ lðjx0 � xjÞ
l0

¼ aðjx0 � xjÞ ð8Þ

where k0 and l0 are the material constants of the local (classical)
theory, i.e.

tkl ¼ k0errdkl þ 2l0ekl ð9Þ

Here, tkl is the Hookean stress tensor and ekl is the strain tensor

ekl ¼
1
2
ðuk;l þ ul;kÞ ð10Þ

The macroscopic stress t at a point x in a Hookean solid is related to
the strain e at the point by the generalized Hooke’s law

rðxÞ ¼ CðxÞ : eðxÞ ð11Þ

where C is the fourth-order elasticity tensor and: denotes the ‘‘dou-
ble-dot product’’. The Kernel function a(jx0 � xj) is normalized over
the volume of the body, i.e.Z
V
aðjx0jÞdt0 ¼ 1 ð12Þ

With these, constitutive Eq. (5) is abbreviated to

rkl ¼
Z
V
aðjx0 � xjÞtklðx0Þdt0 ð13Þ

A more useful case involves matching the Fourier transforms of
constitutive moduli (such as kijkl) in the wave number space with
the dispersion curves based on the atomic models. The Fourier
transform of a(jx0 � xj) is expressed as follow

�a ¼ ð1þ ðlsÞ2k2 þ c4k4Þ
�1

ð14Þ

Then the nonlocal stress constitutive Eq. (13), for the infinite media,
gives

ð1þ ðlsÞ2k2 þ c4k4Þ�rkl ¼ �tkl ð15Þ

where �rkl and �tkl are the Fourier transforms of rkl and tkl.

228 B. Uymaz / Composite Structures 105 (2013) 227–239



Download	English	Version:

https://daneshyari.com/en/article/252005

Download	Persian	Version:

https://daneshyari.com/article/252005

Daneshyari.com

https://daneshyari.com/en/article/252005
https://daneshyari.com/article/252005
https://daneshyari.com/

