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a b s t r a c t

This paper covers a large variety of theoretical generic beam models including some small length scale
terms. Strain gradient elasticity and Eringen’s nonlocal elasticity models are applied to beam mechanics
including Euler–Bernoulli, Timoshenko and higher-order shear beam models. The buckling and vibration
behaviour of these generalized shear beam models is investigated for pinned–pinned boundary condi-
tions. The variational formulation of these enriched beam models is given leading to consistent variation-
ally-based boundary conditions. The paper first starts with the axial behaviour of gradient or nonlocal
elasticity bars. The beam behaviour is then analyzed using a unified framework, where the kinematics
classification is presented from a generalized gradient constitutive law. It is shown that higher-order
shear beam models can be classified in a common gradient elasticity Timoshenko theory, whatever the
shear strain distribution assumptions over the cross section. We show the kinematics equivalence
between Bickford–Reddy higher-order shear beam model and Shi–Voyiadjis higher-order shear beam
model, even if both models are statically not equivalent (from the stress calculation). This equivalence
is highlighted on buckling and vibrations results. The model valid for macrostructures is generalized
for micro or nanostructures using some nonlocal and gradient theories to account for small scale effects,
in the axial and in the bending directions. We both use the Eringen’s based integral theory and the gra-
dient theory to derive the buckling and vibration differential equations. These two theories can be con-
nected using a generalized hybrid nonlocal law. Eringen’s model is compared to a stress gradient model,
whereas the gradient elasticity theory is typically a strain gradient theory. The nonlocal framework is also
developed in a variational consistent framework, for bending, vibrations and buckling configurations. The
nonlocality is shown to be equivalent to higher-order inertia modelling for the dynamics analysis. Buck-
ling and vibrations solutions are presented for the nonlocal higher-order beam/column models with pin-
ned–pinned boundary conditions. We finally analyse the main characteristics of both nonlocal and
gradient theories to capture the small scale effects for micro and nanostructures. Stiffening or softening
effect of gradient or nonlocal elasticity models are discussed for the buckling and the vibrations analyses.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is devoted to a classification of different beam mod-
els, that account for both the shear effect and the small length scale
terms for small scale applications (micro or nanostructures). The
analysis is restricted to a plane motion for simplicity, and only
elasticity is considered for the constitutive law. Each beam model
is built consistently from variational arguments in order to obtain
physically and variationally-based boundary conditions. Among
the different beam models available in the literature, the simplest
one is the Euler–Bernoulli beam model, where the rotation func-
tion is equal to the slope angle. The constitutive law expressed at
the beam level is expressed from a linear relationship between
the bending moment and the in-plane curvature. This model is

useful especially for thin-beam structures but has shown limita-
tions when modelling laminates, or sandwich structures for in-
stance when shear effect along the depth of the beam may be
predominant (or for small transverse shear stiffnesses). In the Tim-
oshenko model which has a more refined kinematics, two indepen-
dent fields are assumed for the kinematics, namely the deflections
and the rotations, and the constitutive law now relates both the
bending moment and the shear force to the curvature and the
shear strain. Even if superior to the Euler–Bernoulli beam model,
the introduction of independent rotations may be not sufficient,
as considered by the Timoshenko model, since this First-Order-
Shear-Deformation theory implicitly assumed that any cross-sec-
tion will be plane before and after deformation. Furthermore, the
Timoshenko model requires shear correction factors to compen-
sate for the error due to the constant shear stress assumption along
the depth of the beam.
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Higher-order shear beam models have been developed to refine
the simplified kinematics of the Timoshenko model by expressing
the displacement field with polynomials of higher degree. In these
refined theories, the transverse shear strain (and shear stress) is
vanishing on the top and bottom edges of the beam. The higher-or-
der shear beam models considered in this paper are the polynomial
cubic-based model of Shi and Voyiadjis [1] (see more recently [2]
or [3]) or the model of Bickford–Reddy ([4,5]). Some other kine-
matics can be also considered such as the model of Touratier [6],
the model of Karama et al. [7] and the model of Mechab [8]. Chall-
amel [9] recently shown that the higher-order shear beam model
of Shi and Voyiadjis [1] can be classified as a Timoshenko gradient
elasticity model. This result has been generalized recently by Chall-
amel et al. [10] for different kind of higher-order shear beam mod-
els, where equivalent classical and higher-order shear stiffness
parameters have to be calculated. When considering the buckling
behaviour of these higher-order shear columns, Wang et al. [11]
also considered the buckling behaviour of higher-order Bickford–
Reddy’s column ([4,5]). Wang et al. [11] obtained a simple and ele-
gant buckling solution that is also used in this paper. In fact, the
buckling solution of Wang et al. [11] is valid for all cubic models
(including the ones of [1–5]) that are all kinematically equivalent,
even if not statically equivalent. This observation was developed
by Shi [2] from numerical arguments (but with different results
for the stress calculation), and the equivalence is confirmed in this
paper from an analytical investigation.

In addition, small length terms can be introduced through gra-
dient elasticity or nonlocal elasticity (typically for small scale
structures). Elishakoff et al. [12] presented some gradient elasticity
solutions and nonlocal elasticity solutions for the Euler–Bernoulli
beam theory, the Timoshenko theory and the Shi and Voyadjis
higher-order shear theory, with the specific stiffening effect of
the additional gradient elasticity terms (or softening effect of the
nonlocal elastic model). In the present paper, the variational argu-
ments behind each gradient or nonlocal theory are detailed, and
the governing differential equations are given for each model, with
the variationally-based boundary conditions. A sensitive study va-
lid for archetypal boundary conditions indicates that smaller is
stiffer with the gradient elasticity model, whereas smaller is soft-
ener with the nonlocal elasticity model. The paper starts from
the axial motion analysis, and then extends the analysis to the
bending case, with the Euler–Bernoulli, the Timoshenko and the
higher-order shear beam modelling. Gradient elasticity and non-
local elasticity are detailed for each theory, and a combination of
both scale effects will be also presented.

2. Axial behaviour

2.1. Eringen’s bar

2.1.1. Static behaviour-Second-order effects neglected
Eringen’s nonlocal model [13] is defined for the uniaxial stress–

strain relationship as:

rðxÞ � l2
c r
00ðxÞ ¼ EeðxÞ ð1Þ

where r is the uniaxial stress, e the uniaxial strain and E the Young’s
modulus. A characteristic length lc has been introduced in Eq. (1) to
account for the so-called nonlocal effects. We shall discuss later the
identification and the meaning of this characteristic length. As
pointed out by Eringen [13], this differential equation clearly shows
that the stress variable is a spatial weighted average of the strain
variable where the weighting function is the Green’s function of
the differential system associated to the relevant boundary condi-
tions. The axial bar constitutive law is now expressed at the
cross-sectional level:

NðxÞ � l2c N00ðxÞ ¼ EAeðxÞ with eðxÞ ¼ u0ðxÞ ð2Þ

where N is the normal force, u is the axial displacement, and A is the
cross-sectional area and e (x) = u0(x). e(x) is here the first-order
strain measure. EA is the axial stiffness of the bar. The equilibrium
equations are expressed thanks to the principle of virtual work:

dU½u� ¼ dp½u� � PduðLÞ ¼
Z L

0
Ndedx� PduðLÞ ¼ 0 with

eðxÞ ¼ u0ðxÞ ð3Þ

where P is a tensile axial force. The equilibrium equations by inte-
gration by parts:

N0 ¼ 0 and ½Ndu�L0 � PduðLÞ ¼ 0 ) NðLÞ ¼ P ð4Þ

For this problem, the normal force is constant along the bar:

NðxÞ ¼ P ð5Þ

In this case, Eringen’s model is equivalent to the local model as:

N00ðxÞ ¼ 0 ) NðxÞ ¼ EAu0ðxÞ ð6Þ

The total potential energy of the nonlocal Eringen’s bar is then writ-
ten as:

U½u� ¼ p½u� � PuðLÞ ¼
Z L

0

1
2

Nedx� PuðLÞ

¼
Z L

0

1
2

EAu02 dx� PuðLÞ ð7Þ

The differential equations of this problem are finally summarized
below from dU = 0:

EAu00 ¼ 0 ð8Þ

2.1.2. Eringen’s bar – static behaviour-second-order effects included
When taken into account the second-order effects, the strain

measure is completed with second-order terms, leading to the
non-local Eringen’s law with the strain:

NðxÞ � l2c N00ðxÞ ¼ EAeðxÞ with eðxÞ ¼ u0ðxÞ þ 1
2
½u0ðxÞ�2 ð9Þ

The equilibrium equations are expressed thanks to the principle of
virtual work:

dU½u� ¼ dp½u� � PduðLÞ ¼
Z L

0
Ndedx� PduðLÞ ¼ 0 with

eðxÞ ¼ u0ðxÞ þ 1
2

u0ðxÞ½ �2 ð10Þ

where P is a tensile axial force. The equilibrium equations are ob-
tained by integration by parts:

ðNð1þ u0ÞÞ0 ¼ 0 and ½Nð1þ u0Þdu�L0 � PduðLÞ ¼ 0

) Nð1þ u0ÞðLÞ ¼ P ð11Þ

For this problem, the normal force in the deformed configuration is
constant along the bar:

NðxÞ½1þ u0ðxÞ� ¼ P ð12Þ
When derivating Eq. (12) one times, one obtains:

N0ðxÞ ¼ � Pu00

½1þ u0�2
� �Pu00 ð13Þ

where the assumption that u0 � 1 has been introduced. Hence, the
linearized differential equations of the Eringen’s problem can be
summarized as:

N � l2
c N00 ¼ EAu0 and N0 ¼ �Pu00 ) ðEAþ PÞu00 � Pl2

c uð4Þ ¼ 0

ð14Þ
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