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a b s t r a c t

The solution method presented in this paper is of Trefftz type which uses exponential basis functions
(EBFs) to solve composite plate problems. Following its success in the solution of plates using well-known
theories (Composite Struct 2011;93:3112–9, 94:84–91 and 2012;94:2263–68), here we aim to apply the
method to higher order shear deformation theories. In this paper we demonstrate the way that one
can generally evaluate the EBFs for a laminated plate using a Zig–Zag theory. We present explicit relations
for three-layer sandwich plates which have a wide range of applications in structural/mechanical engi-
neering fields. The results of our numerical experiments on the bending analysis of composites with dif-
ferent boundary conditions and different configurations are provided and compared with those available
in the literature. For further sudies we present some results for sandwich composite plates, including
those with soft cores, as new benchmarks using the Zig–Zag theory.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays it is well understood that an efficient approach for
the analysis of composite laminates requires a suitable theory for
assuming the through-thickness variation of the state variables
as well as a suitable numerical method for the analysis and approx-
imation of the variables throughout the area representing the mid
surface. Among the theories used for the through-thickness varia-
tion of the state variables, those whose unknowns are of displace-
ment type can be divided into three main groups; equivalent single
layer models (ESL), layer-wise models (LW) and Zig–Zag theories.
In the ESL models, the laminate is replaced by an equivalent sin-
gle-layer anisotropic plate and the assumed displacements vary
continuously across the thickness of the laminate. Apart from the
classical plate theory (CLPT) based on Kirchhoff’s assumptions, an-
other well-known theory in this category is the first-order shear
deformation theory (FSDT) proposed by Reissner [1] and Mindlin
[2]. The reader may refer to [3,4] for a more complete literature.
The theory may not predict accurate results for very thick plates.
In order to increase the accuracy, higher-order shear deformation
theories (HSDT) have been proposed [5–8]. Among these theories,
Reddy’s third-order shear deformation theory (TSDT) is the most
prevalent and efficient one [8]. More accurate models have then
been introduced as the LW ones [9–15]. In these methods, a dis-
placement field within each layer is prescribed. However, they

are computationally expensive because the number of unknowns
depends on the number of layers. It can be concluded that an ESL
model with the characteristics similar to the LW models but with
the number of unknowns independent of the number of layers
may serve as an efficient theory. To this end different Zig–Zag the-
ories have so far been introduced [16–19]. In these theories the
continuity of the transverse shear stresses at the interface of each
pair of layers is assured (see [20] for the history of the Zig–Zag
methods). In this paper, as a sample of Zig–Zag methods, a high-
er-order Zig–Zag theory proposed in [19] is used to perform the
analysis of laminated plates. In this theory, a displacement field
with piece-wise linear variation is combined with another field
with cubic variation. In the literature there are some studies focus-
ing on the theory among which the readers may refer to studies in
[21,22].

In the realm of numerical analysis, various methods have been
developed over the past decades the most well-known of which are
the finite element method (FEM) and the boundary element meth-
od (BEM). The reader may refer to [23,24] for the history of using
the FEM and more general formulations for multilayered compos-
ite plates. The FEM and the BEM have a long history in the solution
of problems in solid mechanics [25,26]. However, problems regard-
ing the expense of meshing, the connectivity of the elements and
the compatibility of the state variables have led to thinking of
using mesh-free methods in composite plates. Among these meth-
ods, one may refer to the element free Galerkin method (EFG) [27]
used for the analysis of plates in [28,29]. Furthermore, the studies
by Ferreira et al. employing radial basis functions (RBFs) for the
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analysis of composite laminated plates [30,31] should be men-
tioned here. There is also another group of mesh-free methods
using a set of points just at the boundaries. The method of funda-
mental solutions (MFSs) proposed by Kupradze and Aleksidze [32]
is classified in the latter category. The BEM and the MFS are some-
times classified as the ‘‘Trefftz’’ type of methods [33,34].

In this study, we shall use a mesh-free method proposed in [35]
and employed for the analysis of composite laminates in [36–40].
This method is based on the use of a series of exponential basis
functions (EBFs) to satisfy the governing equation (see [41–44]
for its application to other engineering problems). The coefficients
are found by the imposition of the boundary conditions through a
collocation approach using a discrete transformation technique
introduced in [35,45,46]. Therefore, this method may also fall in
the category of ‘‘Trefftz’’ methods and is capable of analyzing lam-
inates with a variety of shapes and boundary conditions. In order
to use the method for the analysis of composites modeled by
Zig–Zag theories, we first find the corresponding EBFs. For sand-
wich plates with in-plane isotropy, we present the details of the
procedure with explicit relations to be used as a set of library
functions.

In this paper, we first overview the Zig–Zag displacement field
in Section 2; afterward, we elaborate on the governing equations
and the boundary conditions through a variational formulation in
Section 3. In Section 4, we explain the procedure of finding the
EBFs for a sampling plate problem. In Section 5, our numerical
experiments are presented and the accuracy of the results in com-
parison with the available exact solutions is discussed. In Section 6,
we summarize the conclusions made throughout the paper.

2. The displacement field

In this paper a composite plate with N orthotropic layers and to-
tal thickness of h is analyzed based on a higher-order Zig–Zag the-
ory [19]. The displacement field, in the kth layer (k = 1, . . . ,N), may
be written in a vector notation as

uk¼u0ðx;yÞ�zw0ðx;yÞþ½FðzÞ�kuzðx;yÞ
w¼w0ðx;yÞ

(
½FðzÞ�k¼

F11ðzÞ F12ðzÞ
F21ðzÞ F22ðzÞ

� �
k

;

ð1Þ

where uk ¼ ½u;v�Tk ; u0 ¼ ½u0;v0�T ; w0 ¼ ½@w0=@x; @w0=@y�T and
uz = [uz,vz]T, so that (u0,v0,w0) are the mid-plane displacements
and (uz,vz) are the Zig–Zag displacement terms. According to the as-
sumed displacement field, the unknown vector to be found is [u0-

,v0,w0,uz,vz]T. The Zig–Zag part of the displacements in (1), i.e.
[F(z)]k, may be expressed as

½FðzÞ�k ¼ Hk
1 þ z2H2 þ z3I2�2

n o
; ð2Þ

where I is an identity matrix and Hk
1 and H2 are obtained by the pro-

cedure given in Appendix A.

3. The governing equations and boundary conditions

In this section, we proceed to find the governing equations
through a variational approach (see also [24] for further details
in more general cases). In a static state, the variation of the total
potential of the composite plate is expressed as

dP ¼ dU þ dV ¼ 0; ð3Þ

in which

dU¼
Z

X0

Z h
2

�h
2

½rxxdexxþryydeyyþ2rxydexyþ2rxzdexzþ2ryzdeyz�dz

( )
dX0;

ð4Þ

In the above relations, X0 denotes the domain of the mid-plane de-
fined in x and y. Also r and e represent the components of the stress
and strain tensors, respectively. The second term in (3), dV, pertains
to the variation of the potential of the applied loads (we shall refer
to this part when boundary conditions are to be derived).

By substituting the strain–displacement relations, as well as the
constitutive relations, in (4) and performing integral by parts, a
variational expression in terms of du0, dv0, dw0, duz and dvz is re-
sulted. The expressions conjugate with the displacement variations
represent the governing differential equation as

L~u ¼ q in X0 ð5Þ

where L is an operator matrix, not elaborated here for the sake of
brevity, ~u ¼ ½u0; v0;w0;uz;vz�T is the unknown vector to be found,
and q is a vector containing the loading components defined as
q = [0,0,qz,0,0]T. It is important to note that when L is operated
on a displacement field of a plate with symmetric layer sequence,
some of its elements vanish. Therefore the operator matrix may
be condensed to Lsub

ð3�3Þ as

Lsub ~u ¼ q; ð6Þ

where ~u is now defined as [w0,uz,vz]T, and q is the corresponding
loading vector defined as [qz,0,0]T.

3.1. Boundary conditions

For derivation of the boundary conditions, we focus on dV in (3)
with a general expression as

dV ¼ dVX0 þ dV@X0 : ð7Þ

In the above relation @X0 represents the boundary of X0. Also dVX0

denotes part of dV pertaining to the transverse load while dV@X0 de-
notes part of dV affected by the boundary conditions. Regardless of
the type of the boundary conditions, dVX0 may be written as

dV@X0 ¼ �
Z

s�@X0

Z h
2

�h
2

½r̂nndun þ r̂nsdus þ r̂nzdw�dz

( )
ds; ð8Þ

in which Neumann and Dirichlet conditions appear as a set of con-
jugate pairs. In the above relation r̂nn, r̂ns and r̂nz are the stress
components on @X0 in the directions of n and s, normal and tangent
to the boundary. For Neumann conditions the stresses are pre-
scribed but at this stage there is no need to distinguish them from
Dirichlet ones. In (8) dun and dus denote the variation of the compo-
nents of u in (1) evaluated in the directions of n and s. By defining

dun ¼ dun dus½ �T ; du ¼ du dv½ �T ; ð9Þ

one may write

dun ¼ ndu; n ¼
nx ny

�ny nx

� �
; ð10Þ

where nx and ny are the components of the unit vector normal to the
boundary. In view of (1), for kth layer we have

duk
n ¼ du0n � zdw0n þ ½FðzÞ�kdunz;

dw0 ¼ ½@ðdw0Þ=@n; @ðdw0Þ=@s�T : ð11Þ

By using (11) in (8), and evaluating the integrals in z direction, we
arrive at

dV@X0 ¼ �
Z

s�@X0

du0nNnn þ du0sNns þ duznM�
nn þ duzsM

�
ns

�
þ½@ðdw0Þ=@n�Mnn � ½@ðdw0Þ=@s�Mns þ dw0Q ngds ð12Þ

The signs in the above relation depend on the positive direction of
each component of the conjugate pairs.
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