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Closed form solutions for the flexural and the interfacial behavior of steel beams strengthened by pre-
stressed bonded plates are presented. The method includes the shear deformation effect of the beam
and is applied to three different load cases. The effect of different parameters such as the prestressing
level, steel grade and geometric and mechanical properties of the plate on both the interfacial shear stress
and the flexural behavior of the plated beam is discussed. The results show that while the geometric and
mechanical properties of the plate have influence on the stiffness and the yield load capacity of the plated
beam, prestressing does not affect the stiffness of the plated beam but increases the yield load capacity.
The qualitative results of the analytical method presented in this paper are then compared with the
experimental results of laboratory tests, which show good agreement between theory and practice.

The experimental results show an increase in the yield and ultimate load carrying capacity of the beams
strengthened by prestressed carbon fiber reinforced polymer (CFRP) plates.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Reinforcement using a non-prestressed fiber reinforced poly-
mer (FRP) plate has been used to strengthen flexural members;
however, the permanent loads are not transferred into the
strengthening element, and the FRP only acts against live loads.
By strengthening with prestressed FRP plates (Fig. 1), a portion of
the permanent load will be transmitted into the FRP. Although
the strengthening of steel structures using carbon fiber reinforced
polymer (CFRP) plates has attracted much research attention (e.g.,
[1-25]), there are relatively few studies that have theoretically
investigated the behavior of steel beams strengthened with pre-
stressed CFRP plates [19-21]. On the other hand, laboratory exper-
iments from several studies have shown the effectiveness of using
the prestressed CFRP plates to improve the yield and ultimate load
carrying capacity of metallic structures; however, no theoretical
research has focused on the flexural performance of such systems.
The present paper uses an analytical approach to model the effect
of prestressing on the stiffness, yield and ultimate load carrying
capacity of the plated beams.

1.1. Methodology of existing theoretical approaches

As mentioned above, there are several studies that have treated
the problem of plated beams. Basically, these studies can be di-
vided into two general categories. The first category includes the
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analytical solutions that generate simple closed-form solutions as
a result of the presumption of uniform stresses across the adhesive
thickness (e.g., [17,19-21,26,27]); however, these solutions do not
fulfill the condition of zero interfacial shear stress at the stress-free
end of the plate. The second category includes the higher order
solutions that satisfy the condition of zero interfacial shear stress
at the end of the plate (e.g., [15,18,28]) but arrive at either inex-
plicit or explicit expressions that are much more complicated in
practice than the solutions in the first category. Although the latter
category gives more accurate results, the qualitative results are not
easily attainable. In contrast, the former category presents the
approximate closed-form solution, which can be easily used for de-
sign purposes. The method that is presented in this paper belongs
to the first category and will generate simple closed-form solu-
tions. The shortcomings associated with the lack of zero interfacial
shear stress at the stress-free end of the plate are believed to be re-
stricted only to the immediate vicinity of the plate end [26].

1.2. Existing solutions for steel beams reinforced with prestressed
plates

In general, the governing equations of the beams reinforced
with prestressed plates are the same as those for beams reinforced
by non-prestressed plates. Nonetheless, there are some additional
terms that should be taken into account in these solutions for the
case of prestressed plates. There are few theoretical studies on the
behavior of steel beams strengthened with prestressed CFRP plates
[19-21], all belongs to the first solution category. Al-Emrani and
Kliger [19] considered the effect of prestressing force on the
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Fig. 1. Beam strengthened by a prestressed bonded plate.

interfacial shear stresses. Benachour et al. [20] developed the pre-
vious work [19] for different loading cases. Kerboua et al. [21]
developed [20] to consider the shear deformation effect in their
analysis. The accuracy of an assumption presumed in [20] has been
questioned in [25]. Nonetheless, all the above solutions have gen-
erally been developed by focusing on the interfacial stresses at the
adhesive layer. These solutions do not provide information on the
flexural behavior of beams strengthened by prestressed plates,
however different previous laboratory experiments have shown
an improvement in the yield and ultimate load capacities of the
prestressed plated beam. Hence, it is evident that there is a need
for a series of solutions that study the effect of prestressing on
the load-deflection behavior and the yield load capacity of plated
beams.

In this paper, a closed-form solution for the interfacial stresses
and flexural behavior of steel beams strengthened by prestressed
plates, including the shear deformation effect, is presented. The pa-
per gives closed-form expressions for the axial load distribution
along the prestressed bonded plate and the vertical deflection of
the beam. An approximate expression for the yield load of the pla-
ted beam as a function of the prestressing level is developed. A
parametric study is performed to find the parameters that affect
the stiffness and yield load of the plated beams. Finally, the quali-
tative results of the presented method are compared with the
experimental results.

2. Governing equations
2.1. Basic assumptions

Linear elastic behavior for the beam, the plate and the adhesive
layer is assumed. The beam behaves according to Euler-Bernoulli
theory, and the curvature of the beam is assumed to be identical
to that of the FRP plate. The bending deformation in the adhesive
layer is neglected, and shear and normal stresses are constant
across the adhesive thickness.

2.2. Governing differential equation of interfacial shear stress

Fig. 2 shows a differential segment dx of a plated steel [-beam.
Note that the subscripts s and p denote the terms related to steel
and the FRP plate, and the superscripts M and N are associated with
the terms related to the bending and longitudinal forces at the neu-
tral plane for each adherend. From Fig. 2, the axial force in the steel
beam and in the FRP plate, Ny and N, are equal and are written as:

Ns(x) = Np(x) = N(x). (1)
The strains at the bottom flange of the steel beam and at the top
of the FRP plate are expressed by:
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Fig. 2. Force equilibrium in an infinitesimal element dx.
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where uy(x) and u,(x) are the longitudinal displacements at the bot-
tom flange of the steel beam and at the top of the FRP plate, u¥(x)
and u}(x) are the longitudinal displacements at the neutral plane
of the steel I-beam, M and M, represent the bending moment for
the steel beam and the FRP plate, ¥ (x) and &) (x) are the strains in-
duced by the bending moment at the steel beam and at the FRP
plate and &f (x) and &) (x) are the strains induced by the bending mo-
ment at the steel beam and at the FRP plate. To determine the un-
knowns &f (x) and &) (x), a parabolic shear deformation function is
assumed in the steel beam. Several studies [21,27] have used such
a continuous function of shear deformation over the depth of the
beam, which is zero at the outer surface of the upper edge. More-
over, there exist relevant studies on the strength and stability of
the bonded joints [29-31]. A cubic variation of the longitudinal dis-
placement is assumed in the steel beam as follows:

Ui (x.y) = Ax)y” +Bx)y + C(x), (4)

where y' denotes a local coordinate system with an origin at the
outer surface of the upper flange. Note that X' = x, and thus the for-
mulations in this paper are derived based only on x. A(x), B(x) and
C(x) are coefficients that will be determined later. The shear stress
in the steel beam is then expressed by:

TXy’,S(X’yI) = GSyxy’_s(va,)7 (5)
where G; is the transverse shear modulus of the steel beam. The
shear strain within the steel beam is given as:
N N
/ W /
oy ox

yxy/,s(x7y/) =

In Eq. (6), the first derivative of the transverse displacement,
WP¥(x,y'), with respect to the longitudinal coordinate, x, which
originates from the longitudinal force, N, is assumed to be negligi-
ble. Therefore, Eq. (6) can be rewritten as:

ou (x,y')

ot @)

ny/_g(x,y,) =
Thus, Eq. (5) can be written as:

Tys(X.Y) = G(3A(X)y? + B(x)). 8)
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