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This paper presents a simple first-order shear deformation theory for the bending and free vibration anal-
ysis of functionally graded plates. Unlike the conventional first-order shear deformation theory, the pres-
ent first-order shear deformation theory contains only four unknowns and has strong similarities with
the classical plate theory in many aspects such as governing equations of motion, boundary conditions,
and stress resultant expressions. Equations of motion and boundary conditions are derived from Hamil-
ton’s principle. Closed-form solutions of simply supported plates are obtained and the results are com-
pared with the exact 3D and quasi-3D solutions and those predicted by other plate theories.

Comparison studies show that the present theory can achieve the same accuracy of the conventional
first-order shear deformation theory which has more number of unknowns.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are a class of composites
that have continuous variation of material properties from one sur-
face to another and thus eliminate the stress concentration found
in laminated composites. A typical FGM is made from a mixture
of ceramic and metal. These materials are often isotropic but non-
homogeneous. The reason for interest in FGMs is that it may be
possible to create certain types of FGM structures capable of adapt-
ing to operating conditions. The increase in FGM applications re-
quires accurate models to predict their responses. A critical
review of more recent works on the static, vibration and stability
analysis of functionally graded (FG) plates can be found in the pa-
per of Jha et al. [1]. Since the shear deformation has significant ef-
fects on the responses of FG plates, shear deformation theories
such as first-order shear deformation theory (FSDT) and higher-or-
der shear deformation theories (HSDTs) should be used to analyze
FG plates.

The FSDT accounts for the shear deformation effects by linear
variation for in-plane displacements and requires a shear correc-
tion factor, whereas the HSDTs account for the shear deformation
effects by higher-order variations for in-plane displacements or
both in-plane and transverse displacements. For example, Reddy
[2,3] developed a third-order shear deformation theory (TSDT)
with cubic variations for in-plane displacements. Xiang et al.
[4,5] proposed a n-order shear deformation theory in which
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Reddy’s theory can be considered as a specific case. Based on the
mixed variational approach, Fares et al. [6] proposed a HSDT with
linear and parabolic variations for in-plane and transverse dis-
placements, respectively. Meanwhile, the HSDTs presented by Red-
dy [7], Chen et al. [8], Pradyumna and Bandyopadhyay [9], and
Talha and Singh [10] are developed based on cubic variations for
in-plane displacements and a parabolic variation for transverse
displacement. Neves et al. [11] developed a HSDT with cubic and
parabolic variations for in-plane and transverse displacements,
respectively, based on Carrera’s unified formulation. In company
with the use of polynomial functions in aforementioned works,
trigonometric functions are also employed in the development of
HSDTs. For example, Zenkour [12] presented a generalized shear
deformation theory in which the in-plane displacements are ex-
panded as sinusoidal types across the thickness. Mantari et al.
[13-16] proposed trigonometric shear deformation theories which
account for adequate distribution of the transverse shear strains
across the thickness and satisfy the stress-free boundary condi-
tions on the plate surface without using a shear correction factor.
Based on Carrera’s unified formulation, Ferreira et al. [17] devel-
oped a HSDT with the use of sinusoidal functions for both in-plane
and transverse displacements, whereas Neves et al. [18,19] pro-
posed HSDTs with the use of different expansions for in-plane
and transverse displacement (i.e., sinusoidal [18] or hyperbolic
[19] expansion for in-plane displacements and parabolic expansion
for transverse displacement). Some of the abovementioned HSDTs
are computational costs due to additional unknowns introduced to
the theory (e.g., theories by Pradyumna and Bandyopadhyay [9]
and Neves et al. [11,18,19] with nine unknowns, Reddy [7] with
eleven unknowns, Talha and Singh [10] with thirteen unknowns).
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Although some well-known HSDTs have five unknowns as in the
case of FSDT (e.g., the third-order shear deformation theory [2],
the sinusoidal shear deformation theory [12], and the trigonomet-
ric shear deformation theories [13-15]), their equations of motion
are much more complicated than those of FSDT. Thus, needs exist
for the development of shear deformation theory which is simple
to use.

The aim of this paper is to develop a simple FSDT for the bend-
ing and free vibration analysis of FG plates. Unlike the conventional
FSDT, the present one contains only four unknowns and has strong
similarities with the classical plate theory (CPT) in many aspects
such as equations of motion, boundary conditions, and stress resul-
tant expressions. The partition of the transverse displacement into
the bending and shear parts leads to a reduction in the number of
unknowns and governing equations, hence makes the theory sim-
ple to use. Equations of motion are derived from Hamilton’s prin-
ciple. Closed-form solutions of simply supported plates are
obtained. Numerical examples are presented to verify the accuracy
of the present theory.

2. Theoretical formulation
2.1. Kinematics

In this study, further simplifying assumptions are made to the
conventional first-order shear deformation theory so that the num-
ber of unknowns is reduced. The displacement field of the conven-
tional first-order shear deformation theory is given by

Uy (X,y,Z) = u(xvy) +ZPy
U(X,y,2) = ”(XJ’)"‘Z(/’y (1)
U3(X,y,z) = W(X7y)

where u, v, w, @« and ¢, are five unknown displacement functions
of the midplane of the plate; and h is the thickness of the plate. By
deviding the transverse displacement w into bending and shear
parts (i.e., w=w, +w;) and making further assumptions given by
Px=—0Wp[0x and ¢, = —Ow,[dy, the displacement field of the new
theory can be rewritten in a simpler form as

ow,
(x,y,2) = u(xy) — 25 ”
aw,
UZ(X,y,Z): U(va)_za_yb (2)

U3(X,y,z) = Wb(x>y) + WS(va)

Clearly, the displacement field in Eq. (2) contains only four un-
knowns (u, v, wp, Ws). In fact, the idea of partitioning the transverse
displacements into the bending and shear components is first pro-
posed by Huffington [20], later adopted by Krishna Murty [21], Sen-
thilnathan et al. [22], Shimpi [23], and recently by Thai and his
colleagues [24-41].

The nonzero strains associated with the displacement field in
Eq. (2) are:

ou 0w,

b= 2 (3a)
v Pw,

& = - z oy (3b)
ou v o*w,

W/Xy—a—y+af Z(‘)xay (30)
ow.

Ve = (3d)
ow.

Vyz = 6_y$ (36)

2.2. Equations of motion

Hamilton’s principle is used herein to derive equations of mo-
tion. The principle can be stated in an analytical form as

T
0 / (U + 8V — 5K)dt (4)
0
where U, 6V, and K are the variations of strain energy, work done,

and kinetic energy, respectively. The variation of strain energy is
calculated by

h/2
oU = / / (Ox08x + Oy 08y + Oxy 0y, + Oxz8)y, + 03207, )dA dz
A J—

h/2
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where N, M, and Q are the stress resultants defined by
-h/2

(NX7Ny7ny) = /h/z(ngayvo-xy)dz (63)
h/2
(My, My, M,y) = /h (Ox, 0y, 0x)Zdz (6b)
— /2
hy2
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The variation of work done by external forces can be expressed
as
oV = —/ qé(wp + ws)dA (7)
A

where q is the transverse load.
The variation of kinetic energy can be written as

5K = / (U311 + 50ty + i135113)p(2)dA dz
JV
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A
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where dot-superscript convention indicates the differentiation with
respect to the time variable t; p(z) is the mass density; and (o, I1, )
are mass inertias defined by

(2 00w,
2\Uox ox

h/2

(k)= [ (122 (©)
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Substituting the expressions for éU, 6V, and é K from Egs. (5), (7),

and (8) into Eq. (4) and integrating by parts, and collecting the coef-

ficients of éu, év, wy, and dwy, the following equations of motion are

obtained:
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