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a b s t r a c t

The main aim of this paper is to present a mathematical model and its numerical realization for the com-
posite material with stochastic interface defects employing the perturbation-based stochastic finite ele-
ments. The defects are modeled as the semicircular micro-cavities (‘‘bubbles’’) lying with their diameters
on the reinforcement-matrix interface inside the weaker material region (matrix). Both total number of
the defects as well as their radii may be defined as the truncated Gaussian random variables with the
given first two probabilistic moments. The composite micro-geometry is simulated according to these
parameters and the entire structure is discretized in both scales using traditional Finite Element Method
procedures. Its probabilistic version is provided thanks to the Response Function Method, where several
numerical tests with random parameter values varying around its mean value enable to determine the
structural response and, thanks to the Least Squares Method, its final probabilistic moments. The pro-
posed technique has been validated on the shear test for the carbon–epoxy composite with the few inter-
face defects and Young modulus of the matrix being Gaussian random variable, where three meshes with
various density show overall convergence of the numerical procedure.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Multiscale modeling of composite materials and their structural
or interface defects in both deterministic fatigue fracture and cer-
tain stochastic models is still computationally attractive [8] and
practically justified [9,12]. It may be based on some computer
models relevant to the contact mechanics [16], some existing
interface numerical models for composites [13] and, on the other
hand, on various probabilistic strategies including Monte-Carlo
simulation [4,10], spectral stochastic finite elements [6] and, of
course, on the stochastic perturbation technique [11]. The major is-
sue is to discover an influence of these microdefects and their
parameters like geometrical dimensions, concentration ratio and
shape (and particularly their statistics) on stochastic response of
the composite and its reliability.

The main objective of this study is an application of the general-
ized Stochastic perturbation-based Finite Element Method (SFEM)
to computational modeling of random interface defects in compos-
ite materials. Numerical model obeys two scales – (a) micro one
connected with the Representative Volume Element of the com-
posite and (b) geometrical scale of the interface, where these de-
fects are located. The stochastic interface defects are defined

uniquely here by two uncorrelated truncated Gaussian distribu-
tions – of their radii and total number at the interface considered
– using the corresponding expected values and variances. Contrary
to the previous numerical studies we use now full tenth order per-
turbation in derivation of the first four probabilistic moments of
the composite response. Let us note that an application of the Di-
rect Differentiation Method is unable in this model since relations
in-between finite element stiffness (even for linear isotropic elas-
ticity) and the defects parameters are unavailable, therefore the
Response Function Method implemented with the least squares
approximation is employed to approximate these functions
through several FEM experiments. We introduce for this purpose
the new parametric domain around the mean values of the random
design parameters and discretize it into the few usually equidis-
tant intervals. Their nodal values are the basis for the defects’
parametrization and that is common decisive issue in many sto-
chastic multiscale models analyzed with our version of the SFEM.

Then, the proposed approach enables to determine numerically
up to the fourth central probabilistic moments and the coefficients
of the structural response – stresses and deformations – as
the functions of the interface defects random dispersions and
expectations of their geometrical parameters, i.e. radius and total
number of the cavities along the interface. Essential computational
analysis is provided using the Finite Element Method with the
mesh refined around the interface defects, while the entire proba-
bilistic analysis is programmed and done after the FEM data
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transfer in the computer algebra system MAPLE. Multi-scale
dependence of probabilistic characteristics for the state functions
vs. interface defects parameters are demonstrated and discussed
with respect to both random dispersion of the defects and stochas-
tic perturbation analysis order. It is done with the use of symbolic
computing procedures to optimize time consumption and overall
effort in the numerical analysis carried out. Further simulations
will be focused on a verification of the homogenization procedure
[7,10] related to the interface scale to replace the defects with
statistically homogeneous artificial interphase in-between original
constituents of the composite considered.

2. Mathematical model of the composite

Let us consider a periodic random fiber composite in plane
strain with parallel fibers in the unstressed and undeformed state.
The section of this composite structure Y � R2 in the plane x3 = 0,
orthogonal to the fiber direction is shown in Figs. 1 and 2 in the
macro- and micro-scale, respectively. Let us consider the rectangu-
lar periodicity cell X of Y and let the geometric dimensions of X be
related to the corresponding dimensions of Y by a certain geomet-
rical scale parameter [10,11].

Further, let X contain n coherent regions, where n e N, n <1
satisfying the following conditions:

X ¼
[n
a¼1

Xa [
[n
a¼2

Cða�1;aÞ; ð1Þ

Xa \Xb ¼ Ø; for a–b;1 6 a; b 6 n; ð2Þ

where C(a-1,a) is a bounded and sufficiently regular contour being a
real boundary between the regions Xa�1 and Xa (two different
materials). Let us consider such a class of periodicity cells X that
for every a an interior of contour C(a�2,a�1) is contained in the inte-
rior of contour C(a�1,a) and that these contours are disjoint. Let us
consider the micro-contact phenomenon between the components
Xa�1 and Xa on the interface C(a�1,a) (cf. Fig. 3) and let us assume
the approximation of the material discontinuities occurring on this
boundary by random ‘‘bubbles’’ (semi-circles) with both their radii
r(x) and total number at the given interface n(x) being random;
the ‘‘bubble’’ diameters are coinciding with the boundary C(a�1,a)

(whose curvature is neglected and such that the ‘bubbles’ cannot
overlap). The parameters of the bubbles are assumed to be Gaussian
random variables limited to the nonnegative values only. Further let
for every Xa the expected values and variances of the defect radii
and frequency of occurrence be given. A geometrical idealization
and assumptions concerning the RVE imply that random distribu-
tion of material interface defects in terms of their radii and total
number are exactly the same in each cell with a single fiber.

We assume also that the virgin and continuous materials con-
stituting this composite are linear elastic and transversely isotropic
defined with the use of the random elasticity tensor field Cijkl (x x)
is defined as follows

Cijklðx;xÞ ¼ eðx; xÞ

dijdkl
mðxÞ

ð1þ mðxÞÞð1� 2mðxÞÞ

�
þðdikdjl þ dildjkÞ

1
2ð1þ mðxÞÞ

�
; ð3Þ

where i, j, k, l = 1, 2; all the above specified elastic characteristics are
assumed equal to 0 for any defect area x e Da, 1 6 a 6 n. Random
fields of the Young modulus and Poisson ratios are so defined that
they have different expectations for various composite constituents
and they are all uncorrelated variables, so that all cross-covariances
equal to 0 [10].

3. Governing equations of the linear elasticity with RFM

Let us consider a statistically heterogeneous and bounded con-
tinuum X � R2 without no initial stresses and strains. Elastic prop-
erties and geometry of X may be treated as design random
parameters and they result in random displacement field ui(x; x)
and random stress tensor rij(x; x) satisfying linear elasticityFig. 1. The composite structure Y.

Fig. 2. The RVE of composite structure in the micro-scale.

Fig. 3. The stochastic interface defects boundary in the micro-contact scale.
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