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a b s t r a c t

In [1] an Equivalent Single Layer (ESL) approach resulting in an efficient and accurate prediction of the
response of layered flat panels was presented and validated using experimental results. The application
of this approach to curved and cylindrical shells is hereby discussed. The difficulties encountered when
attempting to directly apply the Wave Finite Element (WFE) homogenization procedure to curved struc-
tures are initially described. Subsequently, an approach accounting for the curvature of the panel within
the formulation of the ESL is given. The results of the presented approach for a thick sandwich cylindrical
shell are compared to the results of a full three-dimensional FE modelling. The accuracy and the efficiency
of the approach are eventually discussed.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Layered structures of various geometries are widely used in the
aerospace and the automotive industries. The prediction of the
vibroacoustic response of layered structures is therefore of essen-
tial importance during the design process of such industrial prod-
ucts. In order to accurately predict the response of multilayered
panels nowadays three-dimensional FE modelling or Layer-Wise
(LW) theories are typically employed. These approaches may offer
results accurate for a wide frequency range, however they imply
great calculation costs mainly because of the fact that the number
of Degrees of Freedom (DoF) per node employed during the mod-
elling process depends on the number of layers comprised within
the structure. Thus, introducing a fine mesh to maintain interpola-
tion and pollution errors to acceptable levels can result in prohib-
itive calculation costs. Equivalent Single Layer (ESL) approaches are
also used in order to reduce the number of DoF to be solved, how-
ever they usually offer poor predictions regarding the higher order
modes. In [1] it was shown that using a three-dimensional WFE
modelling to calculate the wave propagation characteristics within
layered panels can provide a basis for modelling their dynamic
response.

The prediction of the vibratory response of thick layered shells
has recently been a popular field of research. Among the refined
shell theories a distinction has been made in [2] between theories
for which the number of the unknown variables is independent or

dependent on the number of the layers of the shell. The former cat-
egory is usually referred to as ESL or global approaches while the
latter one is referred to as LW models. Considering the ESL ap-
proaches, a concise summary of the strain displacement equations,
the stress strain equations and the equations of motion for layered
shell structures is given in [3–5]. The analogous of both the Kirch-
hoff–Love and the Mindlin type theories (usually named after Don-
nell–Mushtari and Flügge respectively) are presented. Higher order
theories for curved structures can be found in the bibliography,
however they result in increased computational effort and mathe-
matical complexity. Ganapathi et al. [6] used a higher order theory
to conduct dynamic analysis of laminated thick cylindrical shells
while in [7] the authors used a higher order theory to develop
closed-form solutions for the vibration of thick shells. On the other
hand LW theories are usually superior to ESL approaches in terms
of accuracy however they result in excessive computational cost
when it comes to multilayered structures. Recently, a LW theory
was used in [8] to investigate free vibrations of shell structures.
In [9] the authors studied the dynamic behaviour of cylindrical lay-
ered structures with viscoelastic layers, while in [10] the authors
used a LW approach to formulate shell finite elements. A well
made bibliographic report on the recently developed theories of
layered shells is given in [11].

The WFEM involves the coupling of Periodic Structure Theory
(PST) (see [12]) to the FEM. The wave dispersion characteristics
within the layered media can then be accurately predicted for a
very wide frequency range, by solving a polynomial eigenvalue
problem for the direction dependant propagation constants. The
WFEM for two-dimensional singly curved panels and cylindrical
shells has been formulated in [13] by modelling a trapezoid
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frustum segment of the original curved structure. The wavenum-
bers and the wave types propagating in the layered shell for each
frequency range were computed. The ring frequency of the shell
is also correctly predicted. In [14] the wave propagation character-
istics within doubly curved panels are also computed.

The main novelty of the work hereby presented is the formula-
tion of an ESL approach for curved thick structures of arbitrary lay-
ering. The WFEM is employed in order to compute the wave
dispersion characteristics within the layered shell to be modelled.
The complex intralayer shear deformation effects are therefore cap-
tured through a three-dimensional FE representation of a structural
segment. The computed wave propagation characteristics are subse-
quently used through an homogenization process in order to update
a classic shell theory and accurately predict the dynamic response of
the structure. The approach is therefore capable of taking into ac-
count for the complex shear deformation effects of the structures
while avoiding the complicated kinematic assumptions of higher or-
der theories. The accuracy and the efficiency of the presented ESL ap-
proach are discussed through a numerical validation case.

The paper is formulated as follows: In Section 2 the application
of the ESL approach to layered shells is discussed and a solution for
overcoming the geometry posed obstacles is suggested. In Section 3
numerical examples are presented in order to validate the pre-
sented approach, while in Section 4 its efficiency compared to re-
fined shell theories is discussed. Finally in Section 5 conclusions
are given on the presented work.

2. Application of the ESL approach to a shell structure

2.1. Homogenization procedure

A singly curved thick shell of arbitrary layering and anisotropy
is hereby considered (see Fig. 1). Following the analysis in [1], the
homogenization procedure for curved structures would involve the
computation of the wavenumbers propagating within the shell
using the WFEM and subsequently the direct comparison of the
computed wavenumbers to exact values for classic shell theories
in order to determine the dynamic material characteristics of the
ESL. Such an analysis would give accurate predictions on the purely
circumferential modes of the shell, however with regard to the
modelling of the stiffness effects below the ring frequency towards
the axial direction the approach would encounter two major
challenges:

� It is particularly difficult to encounter exact relationships
between the axially propagating wavenumbers and the
mechanical characteristics of the shell structure. Approxi-
mate solutions for the Donnell–Mushtari and the Flügge the-
ories can be found in [15,16] respectively. However, the
flexural/axial coupling effects within a shell imply that the
flexural wavenumber cannot be expressed merely as a func-
tion of the flexural stiffness and the mass of the structure, as

is the case with flat panels. The use of such wavenumber
relations would therefore imply a source of approximation
and a significantly increased complexity of the problem.
� Even if a ‘neat’ expression of the wavenumbers as a function

of the mechanical characteristics of the shell proves feasible,
the application of the approach would be hindered by the
geometric stiffening effects. In order to avoid such effects
from disturbing the accuracy of the solution the modelled
ESL should present the same ring frequency as the original
layered shell.

Using the aforementioned considerations, the calculation of the
dynamic mechanical properties for the ESL is conducted in the fol-
lowing section.

2.2. Expressions for the dynamic characteristics

The ESL structure should now have an equal flexural stiffness
and surficial density as well as a ring frequency equal to the one
of the original layered shell. Considering the relations of the three
aforementioned quantities as a function of the mechanical charac-
teristics for a Donnell–Mushtari type thin shell we have:
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with fr the ring frequency, Ea,c the Young’s modulus in the axial and
circumferential directions, v the Poisson’s ratio, h the thickness of
the ESL, q its density and R the radius of the shell. Considering
the equivalence between the Donnell–Mushtari and the Kirchhoff–
Love theories it can be deduced that the axial and circumferential
flexural stiffnesses should be related to the flexural wavenumbers
by the relation:
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with k̂f ;WFE the WFEM calculated flexural wavenumbers of the flat
layered panel and ^ represents the frequency dependence. Using
Eqs. (1) and (2) the equivalent mechanical characteristics for the
ESL can be deduced as:
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Fig. 1. A composite singly curved panel modelled within the current approach.

Table 1
Mechanical properties of materials.

Material I Material II

q = 1500 kg/m3 q = 58 kg/m3

Ex = 57 GPa Ex = 78 MPa
Ey = 53 GPa Ey = 78 MPa
vxy = 0.10 vxy = 0.20
Gxy = 3.45 GPa Gxy = 8.7 MPa
– Gyz = 42.6 MPa
– Gxz = 38.3 MPa
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