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a b s t r a c t

The present article is concerned with the applicability of an elastic plate theory incorporating the inter-
atomic potentials for biaxial buckling and vibration analysis of single-layer graphene sheets (SLGSs) and
accounting for the small scale effects. For this purpose, the relations based on the interatomic potential
and Eringen’s nonlocal equation are incorporated into the classical plate theory. The former relations are
obtained through constructing a linkage between the strain energy induced in the continuum and the
potential energy stored in the atomic bonds using the Cauchy–Born rule. The nonlocal governing equa-
tions of motion for buckling and vibration of the SLGSs with simply-supported boundary conditions
are exactly solved and explicit formulae for the frequencies and critical buckling load are derived. The
results generated from the present model are compared with those of molecular dynamic (MD) simula-
tions and the other previously reported ones and a good agreement is achieved. The model developed
herein is independent of Young’s modulus which is of an ambiguous definition in the literature. It is
found that the small scale effect on buckling and vibrational response of the SLGSs is profound and it
becomes more prominent when the side length is low.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In 1991, Iijima made an important breakthrough in materials
science by the invention of carbon nanotube [1] which has pro-
vided great impetus to the development of nanoscience and nano-
technology. Carbon nanostructured materials such as graphene
sheets (GSs) and carbon nanotubes (CNTs) exhibit extraordinary
mechanical, electrical and chemical properties drawing significant
industrial and academic attention that illustrates their unique sci-
entific and technological importance. These superlative properties
of carbon nanostructures lay the foundation for them to be applied
in many novel structures and devices at nanoscale [2–13]. Many of
carbon-based nanostructures are constructed by deforming GSs.
Thereby, understanding the mechanical behavior of graphene
sheets is of much importance in the study of carbon nanomaterials.
GSs are one-atom-thick layers of carbon atoms densely packed in a
honeycomb crystal lattice. They possess leading structural and
electrical properties among which are strength which is 100 times
as steel, unique electrical conductivity, thermal conductivity which
is 10 times as copper and superior transparency making it a suit-
able candidate for flexible electronic displays and the dense hexag-
onal molecular structure which cannot be penetrated by even
helium.

Since nanostructures are of extremely small scale, carrying out
controlled experiments on them are very difficult and prohibitively
expensive taking a lot of efforts. Thus, a strong motivation has been
generated in development of proper theoretical models for charac-
terizing the properties and behavior of nanostructures. Atomistic
methods are generally applied to study the behavior of nanostruc-
tures and provided plentiful results, though they are restricted by
the size of atomic system. Hence, continuum mechanics as a com-
putationally efficient technique has engrossed many research
workers. Relevant works concerning classical continuum models
for analysis of nanostructured materials are reported in [14–26].
However, the classical continuum mechanics models are scale free
which makes their application becomes controversial in some
cases. For example, this continuum approximation is applicable
for the analysis of CNTs when the radius of them is significantly
larger than the interlayer spacing, as pointed out by Peng et al.
[27]. Thus, the traditional continuum mechanics needs to be ex-
tended so that it could be used for analyzing small scale structures.
Eringen proposed the nonlocal continuum elasticity taking into ac-
count the size effects and then accommodating the size-dependent
phenomena [28,29]. In this theory, the stress at an arbitrary point
is assumed to be function of the strain field at every point in the
body. Herein, some of the most relevant published papers on the
applicability of nonlocal version of continuum models for investi-
gation of buckling and vibration response of CNTs and GSs are
cited.
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Peddieson et al. [30] first applied the theory of nonlocal elas-
ticity to static deformation analysis of Euler–Bernoulli beams. Su-
dak [31] presented a multiple-column model to investigate the
infinitesimal column buckling of multi-walled carbon nanotubes
based upon the nonlocal continuum mechanics. He revealed that
the small scale effects are profound on behavior of multi-walled
CNTs such that the lack of the accountability of the size effects
may lead to the overestimation of the critical axial strain. Wang
et al. [32] developed nonlocal elastic beam and shell models to
investigate the small scale effect on buckling analysis of carbon
nanotubes under compression. They concluded that the scale ef-
fect is essential in providing more accurate results for mechanical
behavior of CNTs. Wang and Varadan [33] studied vibration char-
acteristic of single- and double-walled CNTs via the nonlocal con-
tinuum mechanics and elastic beam theories. They [34] extended
their work based on the Flugge shell theory to investigate the
wave propagation in CNTs. Their results demonstrated the signif-
icance of the nonlocal continuum modeling in analysis of nano-
structures due to the consideration of the small scale effects.
Pradhan and Phadikar [35] applied the nonlocal version of contin-
uum models to vibration analysis of double-layer GSs embedded
in a polymer matrix. Ansari et al. [36] analyzed the free vibration
of single-layer graphene sheets via nonlocal elasticity and gener-
alized differential quadrature (GDQ) method. They also employed
the molecular dynamics simulations to validate the nonlocal
model in predicting the resonant frequencies of SLGSs. Arash
and Ansari [37] studied the vibration response of single-walled
carbon nanotubes (SWCNTs) with initial strain based upon the
nonlocal continuum mechanics. Based on the nonlocal elasticity
theory, Aksencer and Aydogdu [38] investigated the vibration
and buckling of nonoplates. They applied the Navier type method
to all edges simply-supported sheets problem and Levy type ap-
proach to the plates with two opposite edges simply-supported
and other ones arbitrary and found that the scale effects should
be considered for nanoplates with length less than 30 nm. Ansari
et al. [39] developed a nonlocal elastic plate model to investigate
vibrational behavior of embedded multi-layered GSs under vari-
ous boundary conditions. They obtained explicit expressions for
the nonlocal frequencies of a double-layered graphene sheet with
all edges simply-supported. Ansari et al. [40] incorporated Erin-
gen’s nonlocality into the shell theory to introduce the small-
scale effects into the axial buckling of SWCNTs with arbitrary
boundary conditions. It was found that, in contrast to the chiral-
ity, boundary conditions have a profound effect on the values of
scale coefficient. They also studied thermal environment effect
on axial buckling behavior of CNTs based on a nonlocal elastic
shell model in [41,42]. The recent work by Ansari et al. [43] on
the free vibration response of double-walled CNTs with various
boundary conditions was also based upon the nonlocal contin-
uum mechanics.

The nonlocal or local continuum mechanics models applied in
the research works which have been presented so far, are of a fault
which is their dependence on Young’s modulus of CNTs or GSs
whose value is scattered in the literature. Prompted by this, pre-
sented herein is the biaxial buckling and vibration analysis of the
SLGSs through incorporation of the interatomic potential into the
nonlocal classical plate theory (CLPT) to avoid the ambiguous def-
inition of Young’s modulus. The Cauchy–Born rule is used to link
the continuum strain energy density to the energy stored in the
atomic bonds and then establish the relations based on the inter-
atomic potential. The constitutive relations are obtained from the
incorporation of the former relations into Eringen’s nonlocal equa-
tion. Based on an exact solution, explicit expressions for nonlocal
frequencies and critical buckling load of an all edges simply
-supported SLGS are obtained. The present results are validated
by ones from MD simulations performed herein and the literature.

2. Interatomic potential for carbon

In 1990, Brenner [45] established an interatomic potential for
carbon from the Tersoff function [44] as

VðrijÞ ¼ VRðrijÞ � BijVAðrijÞ ð1Þ

where rij is the distance between atoms i and j. VR and VA are the
pair-additive terms representing the interatomic repulsive and
attractive interactions and are expressed as
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with R(1) = 0.17 nm and R(2) = 0.2 nm. The multi-body coupling term
Bij is given by

Bij ¼
1
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where hijk is the angle between bonds i–j and i–k and is obtained
from

hijk ¼ cos�1 rij � rik
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The function G is expressed as follows
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The values of the parameters D(e), S, b and R(e) in (2) and (3), d in (6)
and a0, c0 and d0 in (8) for carbon are [45]

De ¼ 6 ev; S ¼ 1:22; b ¼ 21 nm�1; RðeÞ ¼ 0:1390 nm; d ¼ 0:50000;
a0 ¼ 0:00020813; c0 ¼ 330; d0 ¼ 3:5; ð9Þ

The equilibrium bond length, l0, can be analytically determined by
minimizing the interatomic potential as

l0 ¼ RðeÞ � 1
b

ffiffiffiffiffiffiffiffi
S=2

p
bðS� 1Þ ln B0 ð10Þ

where B0 denotes the multi-body coupling term Bij calculated at the
unstrained equilibrium state.

3. Linkage between the continuum strain energy density and
the interatomic potential

The relation between the collective behavior of atoms and the
continuum deformation measures of the material can be estab-
lished via the Cauchy–Born rule [46,47]. The Cauchy–Born rule
equates the strain energy on the continuum level to the energy
stored in atomic bonds. Based on this rule, a homogeneous defor-
mation transfers the atoms from the undeformed configuration
to the deformed one according to a single mapping specified by
the deformation gradient F of a material point. The bond between
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