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a b s t r a c t

This paper presents the nodally integrated plate element (NIPE) formulation for the analysis of laminated
composite plates based on the first-order shear deformation theory. The nodally integrated approach
aims at providing smoothed derivative quantities by constructing nodal strain–displacement operators.
Within this framework a new family of elements for plates with general monoclinic layers is developed:
the strain–displacement operators are derived via nodal integration for linear triangles and quadrilateral
elements. The degrees of freedom are only the primitive variables: displacements and rotations at the
nodes. The NIPEs are locking-free elements, exhibit little sensitivity to geometric distortions and can
be readily implemented into existing finite element codes. The efficiency of the proposed variational for-
mulation is proved whereas effectiveness and convergence of the proposed finite elements are confirmed
through several numerical applications. Finally, numerical results are compared with the corresponding
analytical solutions as well as to other finite-element solutions.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Laminated composite plates and shells are attractive structural
components for engineers due to their extreme design flexibility.
The lamination scheme and material properties of individual lam-
ina provide further degrees of freedom to help designers tailoring
the stiffness and strength of the structure to match the perfor-
mance requirements. The laminated plate theories can be divided
into the following two categories: (i) equivalent single layer (ESL)
theories and (ii) the continuum-based 3D elasticity theory.

Generally the structural theories used to characterize the
behavior of composite laminates fall into the so called equivalent
single layer theories where an equivalent hypothetical single layer
is defined combining the material properties of constituent layers.
The ESL has been found to be adequate in predicting global re-
sponse characteristics of laminates, such as maximum deflections,
maximum stresses, fundamental frequencies, and critical buckling
loads.

ESL includes many theories such as the classical lamination
theory, the first-order shear deformation theory, the higher-order
shear deformation theories, and the layer-wise lamination theory
(see for example [1–7]). Among these theories, the first-order shear

deformation theory (FSDT) is considered the most attractive
approach owing to its simplicity, low computational cost and good
compromise between numerical accuracy and computational
burden.

In this context the finite element method (FEM) is especially ver-
satile and efficient for the analysis of complex structural behavior of
the composite laminated structures. The major problem is how to
eliminate shear locking as the thickness-length ratio of the plate be-
comes small. Many numerical techniques have been proposed to
overcome this phenomenon with varying degree of success. A brief
review is here presented. Plate elements based on enhanced incom-
patible mode, see Ref. [8], with improved in-plane deformation pos-
ses excellent performance. A very effective approach is the mixed
interpolation method [9–12], in which the displacement fields and
the shear strain fields are interpolated independently. The approach
is suitable to produce refined elements by referring to the framework
introduced by the Carrera Unified Formulation (CUF) [13–15]. With-
in this technique the variable kinematic modeling admits linear, par-
abolic, cubic and fourth-order displacement fields in the thickness
direction of the plate. Both equivalent single layer and layer-wise
variable descriptions can be considered. In Ref. [16] a hybrid stress
formulation for laminated composite plates is presented by general-
izing the approach presented in [17–20] for single layer isotropic
plates. A mesh-free model based on the moving Kriging interpolation
is presented in Ref. [21] and employed for computing the vibration
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frequencies of composite laminates. The method shows acceptable
accuracy and the desirable convergence rate for the free vibration
analysis of laminated composite plates. Many other techniques have
been proposed over the years. An interested reader could refer for in-
stance to the literature review presented in Ref. [22].

In this work the nodally integrated plate element (NIPE) formu-
lation is presented for the analysis of laminated composite plates
based on the first-order shear deformation theory. The nodally
integrated approach aims at providing smoothed derivative quan-
tities by constructing nodal strain–displacement operators [23–
26]. In particular the NIPE approach [27] develops assumed strain
finite element for shear deformable plates weakly enforcing the
balance and the kinematic equations. Within this framework a
new family of elements for plates with general monoclinic layers
is developed: the strain–displacement operators are derived via
nodal integration, for linear triangles and quadrilateral elements.
The degrees of freedom are only the primitive variables: displace-
ments and rotations at the nodes. The NIPEs are locking-free ele-
ments, and exhibit little sensitivity to geometric distortions
[27,28]. Finally, they are readily implementable into existing finite
element codes.

1.1. Overview

The paper is organized as follows. The governing equations and
the finite element formulations are stated in Section 2. In Section 3,
the weighted residual formulation is derived and the formulation
of the corresponding assumed-strain operator is presented in Sec-
tion 4. Finally in Section 5, the performance of the procedure is as-
sessed on some benchmark problems for laminated structures.
Examples are also provided to illustrate the element performance
and sensitivity to shape distortion. In Section 6, some concluding
remarks are given.

2. Governing equations and basic notation of a flat shell
element

Consider a plane shell element referred to the following Carte-
sian coordinate frame:

V ¼ fðx; y; zÞ 2 R3jz 2 ½�t=2; t=2�; ðx; yÞ 2 A 2 R2g; ð1Þ

where A and t are the area and the thickness of the plane shell ele-
ment respectively. The boundary of the flat shell element is C = @A.
The three-dimensional displacement is denoted by u and its Carte-
sian components are

ux ¼ uþ zuy; uy ¼ v � zux; uz ¼ w; ð2Þ

where ux = ux(x, y) and uy = uy(x, y) are the rotations of the trans-
verse normal about the Cartesian axes x and y respectively,
u = u(x,y) and v = v(x,y) are the in-plane displacements and
w = w(x,y) is the deflection. The functions ux, uy, u, v, w are the un-
known fields in the laminated plate bending problem (see Fig. 1),
and we can conveniently express the three-dimensional displace-
ment vector in terms of the mixed-component vector of the gener-
alized displacements ~u

½~u� ¼ ½u; v;w;ux;uy�
T
; ð3Þ

as

u ¼ S~u; ð4Þ

where we introduce the shifter

S ¼
1 0 0 0 z

0 1 0 �z 0
0 0 1 0 0

2
64

3
75: ð5Þ

The membrane gradient operator Dm is defined as

Dm ¼
@=@x 0 0 0 0

0 @=@y 0 0 0
@=@x @=@y 0 0 0

2
64

3
75; ð6Þ

and is used to compute membrane strains

gm ¼ Dm ~u; ð7Þ

The bending gradient operator Db is defined as

Db ¼
0 0 0 0 @=@x

0 0 0 �@=@y 0
0 0 0 �@=@x @=@y

2
64

3
75; ð8Þ

(a) (b)

(c) (d)
Fig. 1. Reference geometry with the indication of positive direction.
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