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A numerical approach to predict the elastic properties of composite materials departing from the prop-
erties of the individual constituents is presented. Using a recently proposed algorithm which generates a
random distribution of fibres emulating the real distribution in the transverse cross-section of composite
materials, an estimate of the elastic properties is obtained by performing volumetric homogenisation of
the results from micromechanical analyses. The influence of different geometrical parameters used in the
generation of the random distribution of fibres is analysed, namely, the dimensions of the representative
volume element, the fibre radius, and the interval between neighbouring fibres.
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1. Introduction

The use of composite materials has been flourishing in the last
decades. The possibilities awarded by this class of materials are
almost endless and top-ranked industries have been profoundly
working in developing novel techniques and processes to increase
the level of confidence in the application of composite materials to
real world problems.

One of the difficulties encountered in the application process of
composites is the characterisation of the material behaviour,
namely the identification of its elastic properties from the proper-
ties of the different constituents. Due to their microscopic hetero-
geneity, composite materials present themselves as transversely
isotropic materials, thus being necessary to identify at least five
independent elastic properties to fully characterise the behaviour
of the homogenised composite and establish its stiffness tensor.

Throughout the years, an array of analytical approaches has
been proposed. Making use of the elastic properties of the constit-
uents of the composite material and the volume fraction of each
constituent, different authors proposed closed form equations
which provide an estimate of the elastic properties of the compos-
ite. Voigt [1] proposed a rule of mixtures by assuming that the
strains are constant throughout the composite (in both fibre and
matrix). A few years later, Reuss [2] proposed what became known
as the inverse rule of mixtures by assuming that the stress tensors
would remain constant in both fibre and matrix. These two
conditions establish an upper and a lower bound on the stiffness
coefficients of the material [3].
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Using the minimum theorems of elasticity, Hashin and Shtrik-
man [4] developed a set of tighter and more meaningful bounds
than those of Voigt and Reuss for isotropic materials with arbitrary
internal geometry. Later, Hashin [5] and Hill [6] deduced equations
for the bounds of transversely isotropic composites with isotropic
constituents.

An alternative model which accounts for the internal geometry
of the composite was developed by Hashin and Rosen [7]. The
model admits the existence of an assemblage of concentric cylin-
ders, made of two phases: one central part representing the fibre,
and one annulus surrounding it representing the matrix.

Mori and Tanaka [8] proposed a method assuming that the
average strain in a single reinforcement is related to the average
strain in the matrix by a fourth order tensor. This tensor states
the relation between the uniform strain in a single reinforcement
embedded in an infinite matrix with an imposed uniform strain
at infinity.

With the development of computer technology, numerical
methods became available for the determination of the elastic
properties of advanced composites. In a first approach, Sun and
Vaidya [9] considered that the fibres are distributed in a perfectly
periodic system. Square and hexagonal arrangements of fibres
were used in the study of elastic properties of composites. This pio-
neering work was improved and extended to the determination of
the strength properties of composites [10-13].

However, it is not possible to manufacture composites with
such fibre arrangement and it has been seldom demonstrated that
a random distribution of fibres always provides closer estimates to
experimental data [14]. More importantly, the use of periodic
boundary conditions (PBCs) allows for an elimination of edge
effects [15] and the results obtained by PBCs are always bounded


http://dx.doi.org/10.1016/j.compstruct.2012.05.004
mailto:amelro@fe.up.pt
http://dx.doi.org/10.1016/j.compstruct.2012.05.004
http://www.sciencedirect.com/science/journal/02638223
http://www.elsevier.com/locate/compstruct

3224 A.R. Melro et al./ Composite Structures 94 (2012) 3223-3231
V4 Z V4
t t o e o
3 O \@ 1
& ® @ : :
@ _Y _® 7 ® ¥ O A @ @4\5
o @ NGO O @
N AWG) ONX ©)
(a) Faces (b) Edges (c) Vertices
Fig. 1. Numbering on RVE for application of PBCs.
(a)
Fig. 2. Example of fibre distributions with (a) and without (b) material periodicity.
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by those obtained by displacement and traction boundary condi-
tions [16,17]. The analysis of randomly distributed fibres in the
transverse cross-section of composites in a representative volume
element (RVE) of the real material has been the current trend of
work in recent contributions (Canal et al. [18], for example).

Under the lights of such conclusions, the present contribution
makes use of a recently proposed algorithm - RAND_uSTRU_GEN
[19] - to quickly and efficiently generate a random distribution
of fibres. Afterwards, a set of pre-processing techniques create a
RVE in which PBCs can be applied and the computation of the elas-
tic constants easily performed. The influence of several geometric
parameters required in the implementation of RAND_uSTRU_GEN
is studied. Conclusions and recommendations for future analyses
are withdrawn from these parametric studies.

2. Periodic boundary conditions

Periodic boundary conditions force such a deformation on the
volume element that the displacement of one of the nodes belong-
ing to one edge must be related to the displacement of the corre-
sponding node in the opposite edge.

Barbero [20] provides a set of kinematic constrains that allow
for the application of PBCs in a three-dimensional (3D) RVE. The

faces, edges and vertices of the RVE. Not only the degrees of free-
dom of these nodes are variables in these constraints but also the
far-field applied strains. Depending on which position the nodes
are - faces, edges or vertices - a different set of constraints must
be applied to its degrees of freedom. These constraints can be
incorporated in a finite element analysis by using linear multi-
point constraints [21].

2.1. Faces

Fig. 1a shows the location and numbering used for the faces of
the RVE to apply PBCs.

Each node positioned on one face will have its degrees of free-
dom combined with a node placed on the opposite face. The num-
bering used for the faces in Eqs. (1) is established according with
Fig. 1a [20]:
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In Eq. (1), uf represents the degree of freedom i of a node in face n.
The variables a, b, and c represent the dimension of the RVE in the y,
z, and x directions, respectively. The applied far-field strain
components are represented by sg. The far-field strain tensor is a
symmetric tensor and is defined in terms of tensorial shear strains.
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