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a b s t r a c t

This paper evaluates a number of classical and refined two-dimensional theories for the analysis of
metallic and composite layered plates. Thin-plate, shear deformation and higher order plate theories
are compared for various plate problems related to different mechanical and geometrical boundary con-
ditions (BCs), as well as geometries and staking sequence lay-out. The theories are implemented by refer-
ring to a Unified Formulation (UF) proposed by the first author. The UF allows displacement fields with
any order N in the thickness plate direction to be introduced and any variables in the N-order displace-
ment field to be discarded. The finite element method is applied to include anisotropy and complex BCs.
The accuracy of given theories for each fixed problem is established in terms of displacement and stress
fields. The best plate theories, that is the most accurate plate theories with few computational efforts, is
then determined by exploring various possibilities and by selecting appropriate unknown variables upon
application of genetic algorithms. A best plate curve is established which shows the best plate theories
(number of terms and their meanings) in terms of accuracy. It is concluded that a best plate theory
changes with changing geometry, lay-out and BCs. The genetic algorithm used allows the least expensive
computational model of each given problem to be detected.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Metallic and laminated composite panels are used to build
much of the structures of modern aerospace vehicles. The rational
design and analysis of these panels is a fundamental task for struc-
tural analysts. Accurate evaluation of their static, dynamic, buck-
ling, aeroelastic and fatigue response require adequate structural
models for both metallic and composite plates. Since the works
by Lekhnitskii [1,2], a number of relevant contributions have been
made to improve the classical plate theories originally proposed for
one-layered isotropic structures. For a complete overview of exist-
ing Layer-Wise and Equivalent Single Layer theories see the excel-
lent reviews by Ambartsumian [3], Librescu and Reddy [4],
Grigolyuk and Kulikov [5], Kapania and Raciti [6,7], Kapania [8],
Noor [9–11], Reddy and Robbins [12], Carrera [13,14], Qatu
[15,16], and the books by Librescu [17], Reddy [18] and Qatu
[19]. Theories can be classified according to the expansion adopted
for unknown variables:

� Classical models are based on Kirchhoff–Love’s assumptions:
thickness strain as well as transverse shear deformations are
neglected. The Classical Lamination Theory (CLT) is pertinent
to this group.

� Refined theories are obtained if at least one of Kirchhoff’s
hypotheses is removed. For example, the Reissner–Mindlin the-
ories, also known as First Order Shear Deformation Theory
(FSDT), accounts for a constant through-the-thickness trans-
verse shear deformation. Higher order theories, such as Vlasov’s
or Hildebrand–Reissner–Thomas’s, are based on higher order
expansions of the displacement components on the reference
surface.

In the case of layered structures the so-called Zig-Zag (ZZ) the-
ories are particularly noteworthy since they include the ZZ effect
through-the-thickness variation and the Interlaminar Continuity
(IC) of transverse shear and normal stresses within the equivalent
single layer approach. A historical overview [20] has established
that the ZZ theories can be grouped as: Lekhnitskii’s Multilayered
Theories (LMTs); Ambartsumian’s Multilayered Theories (AMTs)
and Reissner’s Multilayered Theories (RMTs).

Refined theories increase the number of unknown variables.
Such an increase could become prohibitive in the case of the appli-
cation of computational methods such as the Finite Element Meth-
od. Recent works [21–24] have contributed to giving an answer to
the following question: for a given problem (geometry, loading,
boundary conditions, lamination lay-out) what is the most accu-
rate plate theory in terms of a fixed accuracy? The above men-
tioned works make use of the Unified Formulation by the first
author of this paper [25] to generate governing equations and
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finite element matrices in terms of fundamental nuclei whose form
does not change with a changing plate theory. In [21], attention is
focused on the closed form solution for isotropic and laminated
plates, whereas the refined beam is addressed in [22]. Finite ele-
ment plate cases for isotropic and laminated structures are consid-
ered in [23,24], respectively. A so-called ‘best plate theory diagram’
BPTD was traced for many problems, that is, plate theories were
recognized in terms of error on a given parameter (stress, displace-
ment etc.). By tracing the BPTD, the authors noticed that in many
cases (especially in the case of laminated plates) the number of
‘quasi-optimal’ solutions (plate theories close to BPTD) can be very
high and these solutions can vastly differ from each other. This fact
introduces difficulties in clearly establishing the BPTD. To over-
come this problem the present work introduces a genetic type
algorithm to build a robust BPTD. Improved plate theories derived
from a starting group of theories; is the initial population. Each
theory can be considered as an individual with its own DNA and
able to determine the solution with a certain degree of error and
its own computational cost. Following the rules of biological evolu-
tion, described by Darwin in ‘‘The Origin of Species’’ the initial pop-
ulation can evolve and change, generating new individuals which
can determine the solution with a lower degree of error and a low-
er computational cost than their parents. By imposing an evolu-
tionary pressure through ‘‘natural selection’’ it is possible to
reward the best theories by identifying a population which defines
the Best Theory plate Curve after a certain number of generations.
The concept of Genetic Algorithm was developed by Holland and
his co-workers in the 1960s and 1970s [26]. An overview of the
multiple-objective optimization method using genetic algorithms
is presented by Abdullah et al. [27] and Fonseca and Fleming
[28]. An overview of the use of genetic algorithms in engineering
is presented by Gbor and Anik [29]. The present work is organized
as follows: a brief description of the adopted CUF formulations is
given in Sections 2–4; the method used to determine the Best The-
ories Plate Curve is introduced in Section 5; numerical results are
provided in Section 6 and the main conclusions are outlined in
Section 7.

2. Preliminaries

The coordinate reference frame is shown in Fig. 1, where x and y
are the in-plane coordinates while z is the thickness coordinate.
The displacement vector, uk, of a single layer is defined as:

ukðx; y; zÞ ¼ uk
x uk

y uk
z

n oT
ð1Þ

The superscript ‘‘T’’ represents the transpose operator. Stress and
strain components are grouped as follows:
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where p indicates the in-plane components and n the out-of-plane
components. Linear strain–displacement relations are defined as:
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The stress components in the material reference coordinates are ob-
tained by the constitutive law:

rk
m ¼ C�k

m ð5Þ

where C, rm and �m are written in the material coordinates whose
explicit expression are not reported here for sake of brevity. They
can be found in [24].

3. Plate theory based on Carrera Unified Formulation

In the framework of the Carrera Unified Formulation, the dis-
placement components uk

x; uk
y and uk

z of the k-layers (the total
number of layers is indicated by Nl) are postulated, in the z-direc-
tion, according to the expansion
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The subscript t and b denote values related to the top and bottom
layer surfaces, respectively. Ft, Fr, and Fb are base functions of z.
Through the model (6) the continuity of the displacement can be
imposed to the layer interfaces. Eq. (6) can be written in a compact
manner as

uk ¼ Ftuk
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where the components of uk
s are
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From (6) any-order displacement fields, Layer Wise (LW) and Equiv-
alent Single Layer (ESL), can be adopted. Imposing the conditions

uk
xt ¼ ux0 uk

xr ¼ uxr uk
xb ¼ uxN Ft ¼ 1

uk
yt ¼ uy0 uk

yr ¼ uyr uk
yb ¼ uyN

Fr ¼ zr
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and discarding k it is possible to obtain an ESL displacement field.
For example if N = 4 it is possible to obtain the following displace-
ment field

ux ¼ ux0 þ zux1 þ z2ux2 þ z3ux3 þ z4ux4

uy ¼ uy0 þ zuy1 þ z2uy2 þ z3uy3 þ z4uy4

uz ¼ uz0 þ zuz1 þ z2uz2 þ z3uz3 þ z4uz4

ð10Þ

Classical plate theories can also be obtained. The Reissner–Mindlin
plate model approximation [30,31], also known as First Order Shear
Deformation Theory, FSDT, in the case of laminates, requires two
conditions: (1) first-order approximation kinematic fields, (2) theFig. 1. Coordinate reference system.
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