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a b s t r a c t

The compressive post-buckling behavior of composite laminates containing embedded delamination with
arbitrary shape is investigated analytically. For modeling the embedded delamination, the laminate is
divided into three smaller regions. The higher order shear deformation theory is implemented and the for-
mulation is based on the Rayleigh–Ritz approximation technique by the application of the simple/complete
polynomial series for each region. The nonlinear equilibrium equations, which are achieved through the
application of the principle of Minimum Potential Energy, are solved by employing the Newton–Raphson
iterative procedure. Some interesting results are obtained and compared with those achieved by the finite
element method of analysis using ANSYS commercial software. A good agreement is seen to exist between
the results. This is while for a given level of accuracy in the results, ANSYS requires a markedly larger
number of degrees of freedom compared to that needed by the developed method. Moreover, a considerable
reduction in the load carrying capacity of laminate is noticed due to the presence of delamination.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Delamination has been a subject of major concern in engineering
applications of composite laminates because of the associated
problems of structural stability, reduction in load-bearing capacity,
stiffness degradation and fracture. Many delamination related
studies have primarily focused on the prediction of the buckling
load and post-buckling behavior. This is because the presence of
the delamination causes reductions in the bending stiffness which
in turn leads to the undesirable loss in the compressive buckling
and post-buckling strength. Various methods have been proposed
for the analysis of a plate that contains through-the-width and
embedded delaminations. Chai et al. have established an analytical
one-dimensional model for the analysis of delamination buckling of
beam-plate in 1981 [1]. Shivakumar et al. have studied the buckling
behavior of thin elliptical delamination using the Rayleigh–Ritz and
finite element method [2]. Kardomateas has focused on the
post-buckling behavior of thin delaminations in delaminated
Kevlar/epoxy laminates under large applied displacements and
reported some experimental results on the macroscopic behavior
[3]. Piao has used a consistent shear deformation theory to analyze
the beam-plate delamination buckling [4]. Nilsson et al. have

performed an experimental investigation of buckling induced
delamination growth [5]. Adan et al. have solved the governing dif-
ferential equation for beams with multiple through the width del-
aminations to find the buckling load [6,7].

Gu and Chattopadhyay have used higher order shear deforma-
tion theory to study the buckling behavior of delaminated compos-
ite plates [8]. Shahwan and Wass have used the nonlinear spring
distribution between a thin plate which is bonded laterally to a
thick plate to analyze the buckling problem [9]. Suemasu et al.
have studied the effects of circular and multiple delaminations
on the compressive buckling and failure load. They have observed
that although the failure strength depends on the toughness of the
matrix resin, the buckling loads are unaffected by the toughness of
the resin. However, these experiments either have focused on the
critical load or are performed by using very thin or unidirectional
composite specimens [10]. Jane et al. have analyzed the post local
buckling behavior of laminated rectangular plates by implement-
ing Rayleigh–Ritz method and using Von Karman’s nonlinear strain
displacement relations [11]. Andrews et al. have formulated a tech-
nique by utilizing the classical laminated plate theory to study the
elastic interaction of the multiple through the width delaminations
in laminated plates subject to static out of plane loading while
deforming in cylindrical bending [12]. Kharazi et al. have investi-
gated the buckling of composite laminates with a through the
width delamination by using different plates theories. Their meth-
od is based on Rayleigh–Ritz approximation technique [13] and it
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can handle both local buckling of the delaminated sublaminate and
global buckling of the whole plate. Kharazi et al. have also investi-
gated the compressional stability behavior of composite plates
with multiple through-the-width delaminations by using higher
order shear deformation theory [14]. Ovesy et al. have investigated
post-buckling analysis of composite plates containing embedded
delaminations by using higher order shear deformation theory
[15]. They have analyzed plates with square or circle delaminated
regions and their formulation are developed specifically for these
shapes of delaminations. In their work, which is based on the Ray-
leigh–Ritz approximation technique, the shape of the delaminated
region has an important role in defining the corresponding shape
functions. Thus, the shape of the delaminated regions are usually
considered to be of simple types such as circles or squares in order
to avoid the difficulties in satisfying continuity conditions that
might occur with respect to complex shapes. In the current paper,
however, the compressive post-buckling behavior of composite
laminates containing embedded delamination with arbitrary shape
is investigated analytically. The analytical method is based on the
higher order shear deformation theory and its formulation is devel-
oped on the basis of the Rayleigh–Ritz approximation technique by
the implementation of the simple and complete polynomial series.
Although the presented method can be employed for the buckling
as well as the post-buckling analysis of the delaminated plates, the
focus of this paper is on the post-buckling behavior of the plates.
Some interesting results are obtained and compared with those
achieved by the finite element method of analysis using ANSYS
commercial software. It will be seen that for a given level of accu-
racy in the results, ANSYS requires a markedly larger number of de-
grees of freedom compared to that needed by the developed
method.

2. Modeling of the arbitrary shape embedded delamination

In this section the analytical model and the applied theory in
this study are briefly outlined. The Reddy’s third order shear defor-
mation theory is applied in the analytical formulation. Thus the
assumptions of this theory are:

uðx; y; zÞ ¼ u0ðx; yÞ þ z/xðx; yÞ � z3C1 /x þ
@w0

@x

� �

vðx; y; zÞ ¼ v0ðx; yÞ þ z/yðx; yÞ � z3C1 /y þ
@w0

@y

� �
wðx; y; zÞ ¼ w0ðx; yÞ

ð1Þ

where u,v and w are components of displacements at a general
point, whilst u0,v0 and w0 are similar components at the middle sur-
face (Z = 0). In addition /x and /y are the rotations of the mid-plane
normals about y and x axis respectively. Besides C1 ¼ 4

3h2 where h is
the thickness of the whole laminate. Using Eq. (1) in the Green’s
expression for nonlinear strains and neglecting lower order terms
in a manner consistent with the usual Von Karman assumption
gives the following expressions for strain at a general point:

f�eg ¼ fe0g þ zfe1g þ z3fe3g
f�cg ¼ fc0g þ z2ðc2Þ

ð2aÞ

where �eij and �cij are different components of the strain tensor.
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where C2 = 3C1. It is noted that the C1 parameter is defined just for
the higher order deformation theory and it results in e3 and c2

terms, which are vanished in the general expression of the strain
in the classical and first order shear deformation theories.

The stress–strain relationship at a general point for the plates
becomes:
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where Qij are the transformed reduced stiffness coefficients. The
constitutive equations for a plate can be obtained through the use
of Eqs. (2) and (3) and appropriate integration through the
thickness.
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