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a b s t r a c t

The Generalized Unified Formulation (GUF) is a multi-theory and a multi-fidelity architecture for the gen-
eration of a virtually infinite class of Advanced Higher Order Shear Deformation Theories (AHSDT) or Zig-
Zag theories or Layer-Wise (LW) theories with any order of expansion for each of the primary variables.
This work will present, for the first time in the literature, an extension of GUF to address problems in
which every single variable can have either an Equivalent Single Layer (ESL) or a Zig-Zag-enhanced ESL
description [Partially Zig-Zag Advanced Higher Order Shear Deformation Theories (PZZAHSDT)]. Applica-
tions to the case of thick sandwich structures are presented: starting from a baseline fourth-order AHSDT
which also includes the transverse strain effects, all the possible types of PZZAHSDT are generated and
compared with the baseline and with a fourth-order fully Zig-Zag theories.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of composite and sandwich structures requires a
model that can take into account the strong anisotropy along the
thickness and the shear deformation effects. Classical Plate Theory
[33] is in general not adequate especially for moderately thick or
thick plates. The relaxation of the Kirchhoff assumptions led to
the formulation of the First Order Shear Deformation Theory (FSDT)
[44,35,32] in which a generic planar cross-section initially orthog-
onal to the mid-plane of the plate after the deformation takes place
is still planar but no longer perpendicular to the mid-surface of the
plate. An initially planar cross-section can be allowed to deform in a
generic shape with the inclusion (usually for the in-plane displace-
ments only) of higher order terms in the axiomatic expansion along
the thickness. These approaches are the so called Higher Order
Shear Deformation Theories (HSDT) [54,7,30,56]. Transverse strain
effects may be added by including higher order terms in the thick-
ness expansion for the out-of-plane displacement uz. The resulting
theories are here indicated as Advanced Higher Order Shear Derfor-
mation Theories (AHSDT). However, as will be demonstrated in
detail in this paper, due to both the interlaminar equilibrium of
the transverse stresses and anisotropy of the mechanical properties
along the thickness, all the displacements and stresses (with the
only exception of the transverse normal stress) present a disconti-
nuity of the first spatial derivative with respect to the thickness
coordinate z. The discontinuity of the displacement variables is

what people refer to ‘‘Zig-Zag form of the displacements’’
[6,1,31,53]. Based on this physical evidence it has been proposed
by many researchers to include the Zig-Zag form of the displace-
ments a priori with a model that is still a computationally inexpen-
sive formulation but has a significant improvement of the results
due to a better physical representation of the real deformation of
the anisotropic composite structure. Following the historical recon-
struction attempted in Ref. [13] on this subject, the Zig-Zag theories
can be subdivided into three major groups:

� Lekhnitskii Multilayered Theory (LMT)
� Ambartsumian Multilayered Theory (AMT)
� Reissner Multilayered Theory (RMT)

In the Lekhnitskii Multilayered Theory [34] (originally formu-
lated for multilayered beams) the Zig-Zag form of the displace-
ments and continuity of the transverse stresses were enforced.
LMT was extended to the case of plates by Ren [48,47].

In the Ambartsumian Multilayered Theory [5,4,2,3] (formulated
for both plates and shells) an interlaminar continuous transverse
shear stress field is a priori enforced. The displacement fields pres-
ent a discontinuity of the first derivatives in the thickness direction
(Zig-Zag form). Later the effects of transverse normal strain/stress
were also included [51,52,38–40]. Whitney [55] applied AMT to
anisotropic and non-symmetrical plates. Later [41] Rath and Das
extended Whitney’s work to shells and dynamic problems. Other
authors such as Yu [57], Chou and Carleone [18] and Di Sciuva
[29] worked on similar (but less general) approaches. Cho and Par-
merter refined [17] these alternative approaches and obtained a
Zig-Zag formulation which was equivalent to AMT.
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In the Reissner Multilayered Theory the transverse stresses are
primary unknowns as well as the displacement variables [45,46].
The variational statement is Reissner’s Mixed Variational Theorem.
Murakami [36] proposed to take into account the Zig-Zag effects by
enhancing the corresponding displacement variable with a Zig-Zag
function denoted here as Murakami’s Zig-Zag Function (MZZF).
Applications of the concept of enhancing the displacement field
with MZZF were presented in several works [15,19,21,26,10,
9,8,50] in the last few years. The main advantage of Zig-Zag
approaches is in the significant improvement of the accuracy with
little increment of the computational cost with respect to the inex-
pensive (but often inaccurate) classical formulations.

For more challenging problems (for example a sandwich struc-
ture with a very high Face-to-Core Stiffness Ratio) a LW
[16,37,42,49,43,12,11] approach is necessary and represents a
valuable alternative to the computationally very expensive Finite
Element discretizations based on solid elements. All of these LW
and ESL approaches can be unified with the adoption of the so
called Compact Notations (CN). Example of Compact Notations are
Carrera’s Unified Formulation (CUF) [14] and its generalization rep-
resented by the Generalized Unified Formulation (GUF) [22–28].
The main idea behind GUF is the writing of each displacement var-
iable (or/and stress variable in the case of mixed formulations)
independently from the other unknowns. With this approach,
any combination of orders can be achieved. For example, an AHSDT
with cubic thickness expansion for the in-plane displacements and
a parabolic expansion for the out-of-plane displacement can be
represented as well as a LW theory with parabolic expansion of
the in-plane displacement variables and linear expansion for the
transverse displacement uz.

1.1. What are the new contributions of this work

Up to now the Generalized Unified Formulation could handle
any combination of orders for the displacement unknowns. How-
ever, the type of description was the same for all the displacements
(e.g., LW or ESL description for all the variables). With this work
and for the first time, GUF is further generalized. In particular, it
is presented the case in which some variables can be described in
an ESL form and others will be enhanced with MZZF. This work first
discusses the physical and mathematical justifications of the need
of Zig-Zag form of the displacements and stresses (with the only
exception represented by the transverse normal stress rzz as will
be discussed later) and then presents the main theoretical aspects
and results.

2. Zig-Zag form of the displacements

A mathematical explanation of the Zig-Zag form of the displace-
ments is discussed. Classical Form of Hooke’s Law (CFHL) in plate
coordinates [43,23] is:
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where the explicit expressions for the coefficients can be found in
Ref. [43]. With the exception of the Zig-Zag term (in the Zig-Zag
term k represents an actual exponent as will be specifically seen
later), whenever superscript/subscript k is present it means that
the corresponding quantity is referred to layer k. From CFHL and
the geometric relations, which relate the strains to the displace-

ments, the transverse shear stress rzx evaluated at the top surface
ðz ¼ ztopk

Þ of layer k can be written as
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the superscript t is used to highlight the fact that the top surface of
layer k is considered. The same relationship written at the bottom
surface ðz ¼ zbotðkþ1Þ Þ of layer k + 1 can be written as
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the superscript b is used to highlight the fact that the bottom surface
of layer k + 1 is considered. For the transverse shear stress rzy sim-
ilar finding can be obtained from CFHL (see Eq. (1)):
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In the most general case the fiber orientations and/or material prop-
erties of layer k are different than the ones relative to layer k + 1.
Thus, in the general case it can be inferred thateC ðkþ1Þ

ij – eCk
ij ð5Þ

where eC ðkþ1Þ
ij is the generic Hooke’s coefficient relative to layer k + 1

whereas eCk
ij is the generic Hooke’s coefficient relative to layer k. At

any arbitrarily given point P1 � (x1,y1) located at the interface
between two consecutive layers the displacement uz must be a con-
tinuous function in the thickness direction: uðkþ1Þ b

z ðx1; y1Þ ¼
uk t

z ðx1; y1Þ. At any other arbitrary point P2 � (x2,y2) at the interface
between the same two layers the displacement uz must still be a
continuous function: uðkþ1Þ b

z ðx2; y2Þ ¼ uk t
z ðx2; y2Þ. Since the points P1

and P2 can be selected anywhere in the x, y plate domain (note that
the z coordinates of the two points correspond to zbotðkþ1Þ which is
coincident with ztopk

by definition of interface) it is deduced that
all the in-plane derivatives of the displacement uz must also be con-
tinuous functions in the thickness direction (otherwise a satisfied
continuity of the displacement uz in P1 would not imply the conti-
nuity of the same displacement in another point P2 selected on
the interface). Thus, the compatibility of the displacement uz

implies that any derivative of uz of any order with respect to any
direction contained in the plane at the interface between any two
consecutive layers must be a continuous function along the thick-
ness. A particular case of this statement is the continuity of the first
derivatives (but as discussed above any order of in-plane deriva-
tives must be continuous functions):
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where for example the following definition has been used:
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