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a b s t r a c t

The main aim of this paper is to present an application of the generalized stochastic perturbation technique
to model stochastic ageing processes of the metallic fibre-reinforced periodic composite materials in terms
of their effective properties. Those ageing processes are modelled here as two-parametric time series having
Gaussian random initial values and time rate, both defined uniquely by their expectations and standard
deviations. Computational homogenization procedure is discrete and based on the Finite Element Method
program MCCEFF as well as the computer algebra system MAPLE, where the Response Function Method and
the stochastic analysis are entirely implemented. This numerical strategy is used to analyze probabilistic
moments of the effective elastic tensor of the few metal matrix composites as well as to simulate stochastic
ageing of two representative composites – MoSio2–SiC and Ti–SiC. The approach proposed and results of
computations may be further applied in the reliability analysis of metallic or the other composites.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A computational modeling of the stochastic processes based on
the Monte-Carlo simulation method is known for their large time
consumption because the entire generalizations of random popula-
tions in different discrete time moments are evaluated and used in
various Finite Element Method models. More optimal strategy
would be based on the observation of the probabilistic moments
of the examined processes in the same time moments as before
performed with at least comparable accuracy. The generalized sto-
chastic perturbation technique based on the Taylor expansion of
the uncertain parameters and the state functions may be useful
in this case, to determine for instance the probabilistic moments
of the effective elasticity tensor. However, we need to have the
analytical description for the basic moments of the stochastic pro-
cesses being modeled to assure the sufficient input for the pertur-
bation-based analysis. This process does not need to have the
Gaussian realizations for the whole history, however the lack of
correlation between various parameters simplifies significantly
the analysis. We can use in this purpose some forms of the ageing
processes known from computational biology [1] (as the exponen-
tial forms), power-laws popular in various branches of engineering
[2] or just the linear decay [4] with random coefficients popular in
the civil engineering inspections.

Contrary to the second order second moment implementations
of the perturbation technique, the hierarchical equations are not

solved here for the increasing order approximants for the
probabilistic output. Now, the Response Function Method (RSM)
is explored, where the polynomial interrelation between the sto-
chastic output and input is to be approximated symbolically via
several deterministic solutions around the mean values of the sto-
chastic parameters in various time moments of the process. Finally,
one can obtain a discrete polynomial approximation of the sto-
chastic process as the function of the initial stochastic process of
the ageing, for instance. The method is similar to the Response
Surface Method known from the literature [9], but instead of the
polynomial form of the lower order for multiple parameters we
use here higher order approximation for a single variable. It should
be underlined that the use of multiple variables is also allowable,
however we would like to distinguish between the influence of dif-
ferent physical quantities influencing the time fluctuations of the
effective tensor probabilistic characteristics. We need to empha-
size that the classical Finite Element Method [11] programs (with
and without the access to the solver source code) may be employed
and extended using the proposed approach.

The engineering practice with composites (and even classical
homogeneous engineering materials) shows that the ageing of
materials (neglecting the real nature of this mechanism) is danger-
ous for many structures and elements and should be included into
the designing process. An integral part of such a designing process
should be mathematical equation simulating the ageing behavior
of various structural elements and materials, a proper computa-
tional modeling technique as well as the final conclusion stating
the safe time of operation for the specific engineering structure
in the given environment. The mathematical equation responsible
for the ageing process may be proposed using the strength
verification, however it would need the very large number of
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experimentation extended for the very long periods of time. In-
stead of it, one may adopt some ageing model proposed exten-
sively in the literature and following the research made in
various applied science and engineering branches – like exponen-
tial or linear ageing decay for different physical or mechanical
parameters.

Taking into account the above considerations, the stochastic
ageing laws applied for the Young moduli of the composite compo-
nents are examined in terms of the effective parameters for the
periodic fiber-reinforced composites with metallic components.
The linear decay responsible for the ageing process is adopted,
where the initial value and the ageing velocity are the Gaussian
random parameters having first two moments constant in time.
This definition of the stochastic process enables to determine the
basic probabilistic moments for the considered parameters and
to include them into the homogenization procedure engaged here
to analyze the metallic composites. Next this procedure is based on
the Finite Element Method program MCCEFF determining the
homogenized stochastic elasticity tensor in plane strain (for the
rectangular periodicity cell and the fiber embedded into it) using
the generalized stochastic perturbation technique. Some additional
algebraic computations are completed in the system MAPLE (inter-
operating with the program MCCEFF), where the response func-
tions are found and used to finally determine stochastic
processes and where graphical representations for the stochastic
processes are provided. Let us underline that the comparison of
the tenth order perturbation approach with the Monte-Carlo sim-
ulation results were proven before in various computational exper-
iments with random variables [3–5], so that it is employed here to
discuss the influence of probabilistic and stochastic fluctuations in
Young moduli of metallic composites on the probabilistic moments
for their composite effective parameters.

2. Fibre-reinforced composite model

The periodic fiber-reinforced composite structure in the plane
strain with linear elastic and transversely isotropic components
and some stochastic parameters is considered now. Let us denote
the Representative Volume Element (RVE) of this composite as
X; Y � R2 stands for the section of this composite with x3 = 0
plane being constant along the x3 axis parallel to the fibers direc-
tion (Fig. 1).

Let the region X contain two perfectly bonded, coherent and
disjoint subsets X1 (fiber) and X2 (matrix) and let the scale be-
tween corresponding geometrical diameters of X and Y is de-
scribed by some small and real parameter e > 0. Let @X denote
external boundary of the X while @X12 – the interface boundary
between X1 and X2 regions. The elasticity tensor is defined here as

CijklðxÞ ¼ BijklðxÞ eðxÞ

¼ eðxÞ dijdkl
mðxÞ

ð1þ mðxÞÞð1� 2mðxÞÞ

�

þðdikdjl þ dildjkÞ
1

2ð1þ mðxÞÞ

�
ð1Þ

The effective tensor Cðeff Þ
ijkl (for the artificial homogenized composite)

is introduced as such a tensor that replacing Ce
ijkl (for the real com-

posite) with Cðeff Þ
ijkl in the following equilibrium equations:

Ce
ijkleklðueÞ þ fi ¼ 0; x 2 X ð2Þ

eijðueÞ ¼ 1
2
ðue

i;j þ ue
j;iÞ; x 2 X ð3Þ

Ce
ijklðxÞ ¼ v1ðxÞC

ð1Þ
ijkl þ ð1� v1ðxÞÞC

ð2Þ
ijkl ð4Þ

where u0 is obtained as a solution being a weak limit of ue with
e ? 0 and where the characteristic function defining the elastic
parameters equals to

v1ðxÞ ¼
1; x 2 X1

0; x 2 X2

�
ð5Þ

with the boundary conditions

ue ¼ 0; x 2 @X: ð6Þ

Now, let us consider the stochastic variations in Young modulus
within the composite, i.e. [4]

Cijklðx; x; tÞ ¼ BijklðxÞeðx; x; tÞ; ð7Þ

with the following representation:

eðx; x; tÞ ¼ � _eðx; xÞt þ e0ðx; xÞ: ð8Þ

The random field e0(x; x) is equivalent to the initial Young moduli
of the composite constituents, whereas _eðx; xÞ represents the
velocity of ageing process for the matrix and the fibre separately, i.e.

_eðx; xÞ ¼ v1ðxÞ _e1ðxÞ þ ð1� v1ðxÞÞ _e2ðxÞ: ð9Þ

It is assumed that this process is of course continuous in time and
the particular components are fully uncorrelated from each other
(Young modulus of both components). Taking into account the rela-
tion (5) one can write that

E½ _eðx;xÞ� ¼ v1E½ _e1� þ ð1� v1ÞE½ _e2� for v1 ¼
1 x 2 X1;

0 elsewhere;

�
ð10Þ

the variance is defined accordingly as

Varð _eðx;xÞÞ ¼ v1Varð _e1Þ þ ð1� v1ÞVarð _e2Þ: ð11Þ

3. Homogenization method

Problem: Determine the series of probabilistic moments
lm Cðeff Þ

ijkl

� �
for O using the lemma

Cðeff Þ
ijkl ¼

1
jXj

Z
X
ðCijklðyÞ þ CijmnðyÞemnðvðklÞðyÞÞÞdX ð12Þ

with periodic and kinematically admissible homogenization func-
tion v(ij)k being a solution to the local problem on Y:

ayððvðijÞk þ yjdkiÞnk;wÞ ¼ 0; ð13Þ

for any periodic w (nk is the unit coordinate vector). A bilinear form
ae(u, v)

aeðu;vÞ ¼
Z

X
Cijkl

x
e

� �
eijðuÞeklðvÞdX; ð14Þ

together with the linear one (including body forces and von Neu-
mann boundary conditions)

LðvÞ ¼
Z

X
fiv i dXþ

Z
@Xr

piv i dð@XÞ: ð15Þ
x3

x2

x1

Fig. 1. Periodic fiber reinforced composite.
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