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a b s t r a c t

A semi-analytical approach is proposed to obtain the linear buckling response of conical composite shells
under axial compression load. A first order shear deformation shell theory along with linear strain–
displacement relations is assumed. Using the principle of minimum total potential energy, the governing
equilibrium equations are found and Ritz method is applied to solve them. Parametric study is performed
by finding the effect of cone angle and fiber orientation on the critical buckling load of the conical com-
posite shells.

� 2011 Published by Elsevier Ltd.

1. Introduction

Conical composite shells have wide applications in aerospace/
aeronautical, naval and civil structures. This extensive application
of conical composite shells in industry calls for efficient tools to
analyze the mechanical behavior of these structures. In many
applications the primarily concern is the stability of the structure
and analytical solution is necessary to predict the critical buckling
load.

There have been extensive studies on the buckling of isotropic
conical shells under axial load and external pressure [1–8]. Seide
[1] proposed a formula for buckling of isotropic conical shell which
is independent of boundary conditions and best fits the behavior of
long shells. Baruch et al. [8] investigated the stability of simply
supported isotropic conical shells under axial load for four differ-
ent sets of in-plane boundary conditions using Donnell-type
theory.

However, although laminated composite materials have found
extensive industrial applications during the last decades, only
few studies have been published targeting the buckling behavior
of conical composite shells. Using Donnell-type shell theory, Tong
and Wang [9] proposed a power series based solution for buckling
analysis of laminated conical shells under axial compressive load
and external pressure. Li [10] considered the stability of composite
stiffened shell under axial compression load. He assumed classical
lamination theory and used Rayleigh–Ritz approximation to solve
the governing equations. Sofiyev [11] studied the buckling of
orthotropic composite conical shell incorporating the effect of

thickness variation and time dependent external pressure. Don-
nell-type shell theory was assumed in his work and Galerkin meth-
od and variational technique were applied to obtain the solution.
Static, free vibration and buckling analysis of laminated conical
shell using finite element method based on higher order shear
deformation theory was carried out by Pinto Correia et al. [12].
The effect of variations of the stiffness coefficients on the buckling
of laminated conical shells was studied by Goldfeld and Arbocs
[13] using classical shell theory and computer code STAGS-A. Patel
et al. [14] studied postbuckling characteristics of angle-ply lami-
nated conical shells subjected to torsion, external pressure, axial
compression, and thermal loading using the finite element
approach.

In this paper, axisymmetric and non-axisymmetric formula-
tions for buckling analysis of conical composite shells subjected
to axial compression load are developed and semi-analytical solu-
tion using Ritz method is obtained. The effect of transverse shear
deformation is taken into account since the classical theory of
shells was shown not to be accurate enough for moderately thick
laminated shells and where the material anisotropy is severe
[12,15]. Parametric study is carried out to reveal the influence of
the semi-cone angle and the fiber orientation on critical buckling
load.

2. Formulation

The principle of minimum total potential energy in conjunction
with variational techniques is employed to derive the governing
equations for general laminated thin-walled conical shells. Linear
strain–displacement relation is assumed. Furthermore, using
first-order shear deformation shell theory, Kirchhoff hypothesis
denoting that the transverse normal to the mid-surface remains
perpendicular to it after deformation, is relaxed.
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2.1. Kinematics

The coordinate system associated with conical shell is shown in
Fig. 1. Based on the shear deformation shell theory assumption, the
displacement field can be written as [16].

Uðx; h; zÞ ¼ uðx; hÞ þ zbxðx; hÞ
Vðx; h; zÞ ¼ vðx; hÞ þ zbhðx; hÞ
Wðx; h; zÞ ¼ wðx; hÞ

ð1Þ

In these equations u, v and w are the displacements of mid-
surface and bx and bh are the rotations of a normal to the mid-
surface about h and x axis respectively.

The strain–displacement relations can be stated in terms of
mid-surface strain and the curvature of the shell as

ex ¼ e0
x þ ze0x

eh ¼ e0
h þ ze0h

cxh ¼ c0
xh þ zc0xh

cxz ¼ c0
xz

chz ¼ c0
hz

ð2Þ
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a in above equations is semi-cone angle.

2.2. Constitutive law

Assuming orthotropic properties for each layer and neglecting
the transverse normal stress, force and moment resultants are re-
lated to strains by laminated stiffness coefficients as follows [17]:
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2.3. Total potential energy

The total potential energy of the conical shell subjected to an
axial compressive in-plane load consists of the strain energy and
the potential energy due to uniaxial compressive force per unit
length. It can be written as

P ¼ U þW ð5Þ

in which U represents the strain energy, while W is the work of the
applied in-plane compressive force and are defined as

U ¼ 1
2

ZZ
xh

Nxe0
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�
þQ yc0

xz þ Q xc0
hz
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bNxx
@w
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The principle of minimum total potential energy which can give
the governing equations of the conical shell subjected to compres-
sive axial load can be stated as

dP ¼ dU þ dW ¼ 0 ð7Þ

where dU and dW are first variation of strain energy and work of the
applied in-plane compressive force, respectively.

2.4. Ritz method

Ritz method is a powerful tool to determine approximate solu-
tions of the governing equations by using the principle of mini-
mum total potential energy (Eq. (7)). This method has an
advantage of giving directly the solution from variational state-
ment by bypassing the equilibrium equations [18].

The approximate solutions for displacements are assumed in
series form as

½uðx; hÞ;vðx; hÞ;wðx; hÞ;bxðx; hÞ;bhðx; hÞ�
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ð8Þ

where Uu
ij; Uv

ij; Uw
ij; Ubx

ij and Ubh
ij are approximation functions and

they need to satisfy convergence and completeness requirements
[18].

Considering Eq. (8) and using Eqs. (2)–(6) and rewriting them in
a matrix form, one can derive the first variation of the strain energy
and work of the applied force by performing repeated integration
by part as

dU ¼
ZZ

xh
d½C�T ½U�T ½B�T ½F�½B�½U�½C�rdhdx

dWs ¼
ZZ

xh
d½C�T ½U�T ½B̂�½U�½C�rdhdx

ð9Þ

Fig. 1. Conical shell coordinate system.
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