

Available online at

SciVerse ScienceDirect

www.sciencedirect.com

Elsevier Masson France

Original article

Biophysical and molecular docking studies of naphthoquinone derivatives on the ATPase domain of human Topoisomerase II

Nonlawat Boonyalai ^{a,*,c}, Pichamon Sittikul ^{a,c}, Narathip Pradidphol ^{b,c}, Ngampong Kongkathip ^{b,c}

- ^a Department of Biochemistry, Faculty of Science, Kasetsart University, 50, Phahon Yothin road, Chatuchak, 10900 Bangkok, Thailand
- b Natural Products and Organic Synthesis Research Unit (NPOS), Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, 10900 Bangkok, Thailand
- ^c Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Chatuchak, 10900 Bangkok, Thailand

ARTICLE INFO

Article history: Received 2 August 2012 Accepted 26 August 2012

Keywords: Naphthoquinones Rhinacanthins Topoisomerase II

ABSTRACT

Numerous naphthoquinone derivatives, such as rhinacanthins function as anticancer drugs, which target hTopoll. The structure of hTopoll contains both an ATPase domain and a DNA binding domain. Several drugs bind to either one or both of these domains, thus modifying the activity of hTopoll. The naphthoquinone esters and amides used in this study showed that their hTopoll α inhibitory activity was inversely proportional to ATP concentration. In order to better characterize the inhibitory action of these compounds, sufficient quantities of soluble functional hTopoll-ATPase domain were required. Therefore, both the alpha and beta isoforms of the hTopoll-ATPase domain were over-expressed in *Escherichia coli*. The hTopoll α -ATPase activity was reduced in the presence of naphthoquinone derivatives. Additionally, a molecular docking study revealed that the selected naphthoquinone ester and amide bind to the ATP-binding domain of hTopoll α . Collectively, the results here provide for the first time a novel insight into the interaction between naphthoquinone esters and amides, and the ATP-binding domain of hTopoll α . The further elucidation of the mechanism of action of the naphthoquinone esters and amides inhibitory activity is essential.

© 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

DNA topoisomerases are necessary and ubiquitous enzymes involved in chromosome condensation and segregation, and in regulating intracellular DNA supercoiling [1,2]. DNA topoisomerases can be classified into two types, Type I and Type II topoisomerases. Type I topoisomerases (TopoI) act by generating a transient single-stranded break in the DNA double helix, followed by either a single-stranded DNA passage event or the controlled rotation about the break, whilst Type II topoisomerases (TopoII) catalyze DNA topological changes by breaking both strands of the double helix and transporting another double-stranded DNA segment through the break and then reannealing the break. TopoI enzymes are involved in all DNA processes and play an important role in maintaining genomic integrity [3,4]. TopoII enzymes on the other hand play essential roles in DNA transaction in vivo.

Abbreviations: ATP, adenosine 5'-triphosphate; EDTA, Ethylenediaminetetraacetic acid; ICRF-187, (S)-4,4'-(1-methyl-1,2, ethanediyl)bis-2,6-piperazinedione; IPTG, isopropyl-β-D-thiogalactopyranoside; NADH, β-nicotinamide adenine dinucleotide; PK/LDH couple assay, pyruvate kinase/lactate dehydrogenase couple assay; hTopoll, human topoisomerase II; SDS-PAGE, sodium dodecyl sulphate-polyacrylamide gel electrophoresis; Tris-Cl, Tris (hydroxymethyl) amino methane.

including chromosome condensation and segregation, and the removal of the supercoils generated during replication and transcription [5]. In addition to such essential functions in the cell, TopoII enzymes have become important targets of many widely used antibiotics and antitumor drugs [6-8]. For instance, eukaryotic Type II topoisomerases are targets of anticancer drugs [9]. These enzymes are homodimers with some variability in molecular weights. For example, the enzyme from Saccharomyces cerevisiae has a monomer molecular mass of 164 kDa [5] while the two isoforms of the human enzyme, α and β , are 170 and 180 kDa, respectively [10]. Topoisomerase-targeting anticancer drugs can be divided into two broad classes that vary widely in their mechanisms of action [9]. Within Class I drugs or "TopoII poisons" two main types exist: the first increases levels of enzyme - DNA cleavage complexes by interacting with TopoII at the protein -DNA interface in a non-covalent manner and the second acts by covalently modifying the enzyme. These drugs act by stabilizing covalent topoisomerase-DNA complexes, which are the intermediates during the catalytic cycle of the enzyme. Although this type of inhibitor has been used in cancer therapy for many years, it is very toxic to normally dividing cells and shows a narrow therapeutic window [11]. Unlike Class I inhibitors, Class II drugs or "catalytic topoisomerase inhibitors" interfere with the catalytic function of the enzyme without trapping the covalent complex. Catalytic Topoll inhibitors are a heterogeneous group of

^{*} Corresponding author. Tel.: +66 2 5625555 ext 2048; fax: +66 2 561 4627. E-mail address: nonlawat.b@ku.ac.th (N. Boonyalai).

compounds that might interfere with the binding between DNA and TopolI, stabilize non-covalent DNA TopolI complexes or inhibit ATP-binding.

Rhinacanthins are naphthoquinone ester derivatives isolated from the methanolic extract of the roots of the medicinal plant *Rhinacanthus nasutus* (Acanthaceae) [12–14]. In Thailand, the roots and leaves of the plant have been incorporated in Thai traditional medicine for treatment of several diseases including cancer and inflammation [15]. Some of the naphthoquinone derivatives showed potent antiallergic activity against antigeninduced β -hexosaminidase release [16,17]. Additionally, these compounds exhibited cytotoxicities against the human carcinoma cell lines, KB, HeLa and HepG2 [18]. Based on the cytotoxicity results, all naphthoquinone esters containing an –OH group at C-3 of the naphthoquinone ring (Fig. 1) showed high toxicity against the said cancer cell lines, while those with a methoxy group or without the –OH group displayed no activity or were much less cytotoxic [18].

Naphthoquinone naphthoate esters with an-OH group at 2position of the naphthalene moiety (e.g., Rhinacanthin-N [Rhi-N]) were significantly more cytotoxic than those with -OMe (e.g., Rhinacanthin-Q, [Rhi-Q]) or without -OH group (e.g., NKPSL4 [18]). Additionally, naphthoquinone naphthoate esters exhibited greater cytotoxicity than naphthoguinone benzoate esters. This structureactivity relationship demonstrates that the scaffold of Rhi-N can be used to develop novel anticancer agents as also confirmed by Sharma et al. (2008) [19]. Some of the naphthoguinones such as 1, 2-naphthoquinone and 1, 4-naphthoquinone are potent inducers of the TopolI-DNA "cleavable complex", which leads to the inhibition of TopolI activity [20-23], whereas Rhi-N and Rhi-O interfere with DNA relaxation of yeast TopolI [18]. Other naphthoquinones such as β-lapachone have been reported to inhibit against various cancers cell lines in vitro and also inhibit the activity of Topol and induce Topollα-mediated DNA strand breaks [23]. Recently, novel naphthoguinone esters containing cyclopentyl and cyclohexyl substituents at C-2of the propyl chain exhibited relatively good cytotoxicities towards cancer cells but much less cytotoxicities towards Vero cells compared to the naphthoguinone esters with 2',2'-dimethyl group (such as Rhi M, RhiN, RhiQ and NKPSL4) [24]. In addition to naphthoquinone esters, the biological activity of novel naphthoquinone amides has been evaluated [25]. Even though, most of naphthoquinone amides showed moderate cytotoxicity towards tested cancer cell lines, they exhibited weak toxicity against normal Vero cell lines and much less toxic than the previous naphthoguinone esters.

In this study, we report a biophysical approach to investigate the effect of naphthoquinone derivatives on the ATPase domain of hTopoll. The presence of the compounds moderately inhibits the ATPase activity of the protein. Using the molecular docking approach, the structures of the ligands-protein-complex were examined. The results reported here can lead to the development

of further novel naphthoquinone derivatives which act as $hTopoll\alpha$ ATPase inhibitors.

2. Materials and methods

2.1. Materials

Buffer A contained 50 mM Tris-Cl pH 8, 0.5 M NaCl, 5 mM imidazole. Buffer B contained 20 mM Tris-Cl, pH 8, 50 mM NaCl. The plasmid miniprep kit was purchased from Fermentas (EU). The primers were synthesized by Bio Basic INC. The HiTrap Chelating HP column was purchased from GE Healthcare (Thailand). ATP, NADH, phosphoenolpyruvate, pyruvate kinase and lactate dehydrogenase were purchased from Sigma (USA). The other chemicals are analytical reagent grade. Naphthoquinone compounds were synthesized according to Kongkathip, et al. [18] and Pradidphol, et al. [25].

2.2. Plasmid construction

The gene encoding ATPase region of hTopollα (residues 29-428) and hTopollβ (residues 45-444) was amplified from plasmids pCM1 and YEPTOP2, respectively (gifts from Prof. Osheroff, N, Vanderbilt University School of Medicine, USA) in a polymerase chain reaction using synthetic primers: F_hTopollA_29, 5′ GAGCAGCTAGCTCTGTTGAAAGAATCTATCAAAAG 3′; R_hTopollA_428, 5′ GTCGGCCTCGAGTTATGAACACTTCTTGTTTAACTG 3′, F_hTopollB_45, 5′ GAGCAGCTAGCTCTGTTGAGAGAGTGTATCAG 3′ and R_hTopollB_444, 5′ GTCGGCCTCGAGTTATGAACACTTCTTATTC 3′. The resulting *Nhel/Xhol* fragment was subcloned into *Nhel/Xhol* sites of the pET28b-expression vector (Novagen) yielding a fusion protein of 400 amino acids with *N*-terminal His-tags (6x His). The sequence of a positive clone containing the hTopoll-ATPase insert was determined in its entirety to ensure that no mutations had been introduced during the polymerase chain reaction.

2.3. Expression and purification of ATPase domain

Plasmids pET28b-hTIIa-ATPase and pET28b- hTIIb-ATPase-constructed as described above were used to express the recombinant ATPase domain of hTopoll. Expression and purification of the enzymes was adapted from [26]. In brief, the expression of hTopoll-ATPase was carried out in *Escherichia coli* BL21 (DE3) cells. Cells were grown at 37 °C to an optical density of $\sim\!0.6$ at 600 nm in LB broth containing 50 $\mu g/ml$ kanamycin and then induced with 1 mM lPTG overnight at 30 °C. After expression, the cells were harvested by centrifugation, resuspended in buffer A and lysed by sonication. The fusion protein was purified by HiTrap Chelating HP column attached to HPLC. The protein was eluted by increasing concentration of imidazole and analyzed by 12% SDS-PAGE. Fractions containing the ATPase protein were dialyzed in buffer B. Protein concentration was determined by the BCA protein assay (PIERCE) using BSA as a standard protein.

Fig. 1. Chemical structures of naphthoquinone compounds used in this study.

Download English Version:

https://daneshyari.com/en/article/2524468

Download Persian Version:

https://daneshyari.com/article/2524468

<u>Daneshyari.com</u>