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a b s t r a c t

The explicit closed-form local buckling solution of in-plane shear-loaded orthotropic plates with two
opposite edges simply supported and other two opposite edges either both rotationally restrained or
one rotationally restrained and the other free is presented. Based on the boundary condition of the other
two opposite edges, two types of plates are considered: the RR (both the edges rotationally restrained)
and RF (one edge restrained and the other free) plate elements. Different plate buckled shape functions
are proposed, and the approximate explicit expressions for the buckling loads are derived using the Ray-
leigh–Ritz method for the plate with the generic rotationally-restrained (R) boundary conditions which
can be reduced to two extreme cases, i.e., simply supported (S) and clamped (C). The accuracy of the
derived explicit solutions is verified by comparing the predictions with the existing solutions and numer-
ical finite element analysis, and excellent agreements are obtained. The effects of material and boundary
restraining parameters on the local shear buckling behavior of the plate elements are discussed. The
derived explicit formulas for the shear buckling loads are straightforward, efficient and reliable for pre-
liminary engineering design and analysis of composite structures under primarily shear-dominant load-
ing conditions.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Advanced composite structures commonly in thin-walled con-
figurations and made of fiber-reinforced plastic (FRP) laminates
are being increasingly used in structural applications. When
undergoing large deflection and strains, unlike the conventional
materials that yield (steel) or crack (concrete), the composite
materials usually exhibit relatively linearly elastic behavior
because of their relatively low stiffness and high strength (e.g.,
E-glass fiber-reinforced composites). Therefore, buckling is a major
concern for thin-walled FRP structures in design, and the critical
buckling load is directly related to the load-carrying capacity of
such structures. One of the simple methods to deal with the local
buckling problem of thin-walled FRP structures is the discrete
plate analysis technique [1]. In this technique, each component
(e.g., flanges or webs) in the cross-section of composite FRP shapes
is modeled as a thin plate under the restraints from the conjunc-
tions of webs and flanges. The restraints along the edges of the
plate elements are usually modeled as the rotational restraining
springs, and the spring stiffness can be adjusted according to the
joint (conjunction) stiffness from the adjacent plates. For instance,
the null value of the rotational restraining stiffness corresponds to
a simply-supported boundary condition (S); while the rotational

restraining stiffness of infinite large is treated as a clamped condi-
tion (C) along the plate edges. In reality, the rotational restraining
stiffness is somewhere between the two extreme cases of S and C.

A large amount of studies in local buckling analysis has been
conducted in general. The main results of these studies have been
reviewed and included in a number of text books [2,3]. Most of the
efforts have been devoted to the laminated plates under uniaxial
compressive loads, whereas the shear-controlled local buckling
has only attracted limited attention. The shear buckling problem
does not readily yield a reasonably exact theoretical solution; thus,
the effort is directed to solve the problem approximately on a ra-
tional basis.

In recent two decades, different analytical and numerical tools,
such as the Rayleigh–Ritz [4–11], Galerkin [12], finite element [13–
15], and finite strip [16,17] methods, have been successfully used
to solve the buckling problem of plates under in-plane shear load-
ing. Based on the Rayleigh–Ritz method, the approximate formulas
for the buckling of angle-ply and cross-ply laminated plates sub-
jected to combined edge compression and shear with the four
edges simply supported were presented by Kumar and Kishore
[4]. Using the sine functions up to an order of eight for summation
as the shape functions, both the symmetric and antisymmetric
buckling modes were discussed. Numerical solutions for the local
buckling of orthotropic plates under uniform compression, linearly
varying compression or shear load were obtained by Tarjan et al.
[11] using the Rayleigh–Ritz method. The displacement was
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simulated by a trigonometric series with 71 terms and 41 terms in
the width and longitudinal directions, respectively. The explicit
expressions for local buckling loads of orthotropic plates with rota-
tionally-restrained edges were obtained by curve-fitting the
numerical solutions. The Rayleigh–Ritz method was also adopted
by other researchers to solve the buckling problem using different
shape functions, e.g., the pb-2 functions [7,9,10].

The problem of buckling of thin rectangular anisotropic plates
subjected to uniform in-plane shear load, as well as some other
in-plane loads, with all edges clamped was studied by Kosteletos
[12] using the Galerkin’s method and adopting the limit terms of
the transcendental functions to simulate the buckled shape. With
the same method, the buckling and postbuckling analyses of per-
fect and simplified imperfect structures were evaluated by Zaras
et al. [5], and the study was restricted to the simply supported
boundary condition.

An extensive treatment of the problem under discussion was of-
fered by Qatu and Leissa [13], who elaborated the conditions for
the bifurcation buckling to occur, e.g., the type of laminates,
boundary conditions, and in-plane loading, using the numerical fi-
nite element method. The lock-free element was developed by
Singh et al. [14] to investigate the buckling behavior of the moder-
ately-thick laminated plates subjected to various in-plane edge
loads. The finite strip method was adopted by Loughlan [17] to
examine the effect of bending-twisting coupling on the shear buck-
ling behavior of laminated composite structures.

Using the energy method, the present study aims to investigate
the stability of orthotropic thin plates with two opposite edges
simply supported and the other two opposite edges either both
rotationally restrained (RR) or one edge rotationally restrained
and the other one free (RF) under the uniformly distributed in-
plane shear load along the four edges as shown in Figs. 1–3. The ex-
plicit closed-form solutions are in need for the preliminary design
and analysis. According to the authors’ knowledge, there are no ex-
plicit closed-form buckling solutions for the thin laminated com-
posite plates with either the RR or RF boundary conditions under
pure shear. Either the trigonometric or polynomial series is occa-
sionally adopted in the literature as the approximate buckling
shape functions. Though the accuracy is improved if more series
expansion terms are included, the high order eigenvalue problems
are tedious to be solved explicitly. In this study, different shape
functions are considered to obtain the shear buckling load of the
elastically-restrained plates explicitly, and the validity of the solu-
tion is confirmed by comparing the predictions with the finite ele-
ment analysis and other numerical solutions available in literature.

2. Generalized buckling analysis

For relatively long plates (i.e., c = a/b > 3), the effect of boundary
conditions at the shorter edges on the critical buckling load is neg-
ligible [7]. Therefore, the boundary conditions of long plates can be
assumed as identical to a periodic plate element, given the con-
stant material properties and applied loads. It is thus possible to
extract a representative plate element (as shown in Fig. 3) employ-
ing the periodic geometric properties and conditions.

In the case of thin-walled beams subjected to the transverse
load, the flanges can be assumed under the in-plane axial load,
while the web primarily carries the shear load and can be modeled
as a plate rotationally-restrained at the web-flange intersections
and subjected to in-plane shear load. While for the stiffened com-
posite panels under in-plane shear load, the plate element between
the stiffeners can be simulated as a rotationally-restrained plate
under pure shear. The segments considered in this work are thin
orthotropic rectangular plates taken from the web or panel with
dimensions of a � b. As shown in Fig. 1, the origin of the coordi-

nates lies at the left corner of the plate. Two types of rotation-
ally-restrained plate elements (i.e., the RR and RF plates) from
different beam cross sections (e.g., I- and T-sections) or stiffened
composite panels are investigated. The transverse edges (x = 0, a)
are assumed simply supported. The other two longitudinal bound-
aries (y = 0, b) of the RR plate are restrained against rotation, while
the RF plate has one edge rotationally restrained and the other
edge free. Only the uniform in-plane shear loads are applied to
both the plates. Bifurcation buckling is considered in this study,
and the pre-buckling and post-buckling states are not included.

The restraint of the plates against edge rotation is modeled as
rotational springs, and it is controlled by the spring stiffness. For
the RR plate, the possible edge boundary condition scenarios along
y = 0, b are totally rotationally free (SS), fully rotationally clamped
(CC) or partially restrained against rotation (RR). While for the case
of RF plate, only one edge y = 0 can be adjusted to the three corre-
sponding types of edge conditions (i.e., S, C, and R).

The most convenient method to obtain the buckling load of the
plate is the energy method. The energy (G) associated with the plate
buckled in an assumed shape is composed of three parts: the strain
energy (Ue) of the plate, the restraining energy (Us) stored in the
spring system along the plate edge, and the work (W) done by the
applied shear load, and they can be expressed, respectively, as
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Fig. 1. The boundary conditions of two types of plates: (a) the RR plate, and (b) the
RF plate.
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