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a b s t r a c t

A new higher order shear deformation theory for elastic composite/sandwich plates and shells is developed.
The new displacement field depends on a parameter ‘‘m’’, whose value is determined so as to give results
closest to the 3D elasticity bending solutions. The present theory accounts for an approximately parabolic
distribution of the transverse shear strains through the shell thickness and tangential stress-free boundary
conditions on the shell boundary surface. The governing equations and boundary conditions are derived by
employing the principle of virtual work. These equations are solved using Navier-type, closed form
solutions. Static and dynamic results are presented for cylindrical and spherical shells and plates for simply
supported boundary conditions. Shells and plates are subjected to bi-sinusoidal, distributed and point
loads. Results are provided for thick to thin as well as shallow and deep shells. The accuracy of the present
code is verified by comparing it with various available results in the literature.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Shells are curved structures, which have increased structural
stiffness compared to plates in carrying loads and moments by a
combined membrane and bending action due to their curvature.
On the other hand, fiber reinforced plastic (FRP) composite materi-
als provide high performance and reliability due to high strength-
to-weight and high stiffness-to-weight ratios, excellent fatigue
strength, resistance to corrosion (e.g. glass fiber composites), and
most importantly the design flexibility also known as tailoring
the materials for desired applications. As a result, shell structures
made of composite materials will continue being widely used for
many years in many engineering fields such as naval, aerospace,
automotive and construction industries and for sporting goods,
medical devices and many other areas [1–4].

It is important to mention that the study of shell theories allow
the understanding of plates, curved beams, and flat beams as
special cases. In the past four decades, a significant number of the-
ories for composited laminated shells have been presented. These
theories can be classified in different models, such as equivalent
single layer, quasi-layerwise and layerwise models [5,6]. This
paper considers an equivalent single layer model. Detailed infor-
mation may be found for the rest of the models in the papers by
Carrera [7–9] and Demasi [5,6,10–13]. According to Carrera’s
unified formulation (CUF) [14] or the unified generalized formula-
tion (GUF) proposed by Demasi [5,6,11–13,15], among equivalent

single layer models, there are many existing class of theories which
CUF or GUF can be reproduced.

However, application of such theories to layered anisotropic
composite shells can lead errors up to 30% in deflections, stresses
and frequencies [69]. First order shear deformation theory (FSDT)
is based on the kinematic field assumption postulated by Mindlin
[16], in which the constant transverse shear strain components
along the thickness is accounted for [17–19]. Higher order shear
deformation theories (HSDTs) were developed to improve the anal-
ysis of shell responses and extensively used by many researchers
[20–59]. Normally, these well-known theories comply with the
free surface boundary conditions and account for approximately
parabolic distribution of shear stresses through the thickness of
the shell. More advanced HSDTs account for the continuity of the
transverse shear stresses, and provide improved results [11–13].

Many higher order theories were proposed by Kant and Swami-
nathan [31], Reddy and Liu [24], Touratier [48], Soldatos [51]. The
present HSDT is simple in the sense that it contains the same
dependent unknowns as in the first order shear deformation the-
ory. The present theory is based on a displacement field in which
the displacements of the middle surface are expanded as a combi-
nation of exponential and polynomial functions of the thickness
coordinate, and the transverse displacement is assumed to be con-
stant through the shell thickness. The theory is constructed from
3D elasticity bending solutions of plates, by performing several
computations of the present shell/plate governing equations,
which has ‘‘m’’ parameter dependent.

The present theory accounts for approximate parabolic distribu-
tion of the transverse shear strains through the shell thickness and
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the tangential stress-free boundary conditions on the shell surface.
The governing equations and boundary conditions are derived by
employing the principle of virtual work. These equations are then
solved via a Navier-type, closed form solution. Static and dynamic
results are presented for cylindrical and spherical shells under sim-
ply supported boundary conditions. Shells and plates are subjected
to bi-sinusoidal, distributed and localized loadings. Numerical re-
sults are generated for thick to thin as well as shallow and deep
shells. The accuracy of the present code is ascertained by compar-
ing it with various available results in the literature. It is found that
the present theory gives more precise results than other higher or-
der theories compared here.

2. Statement of the problem

The aim of this work is to establish a new shear deformation
theory. The main idea of the present theory comes from the shear
deformation theory lately proposed by Aydogdu [57]. If the shape
strain functions of Karama et al. [55] and Aydogdu [57] are com-
pared, it can be seen that mathematically both expressions are the
same [55,57], see Eq. (7), and in author’s opinion the way how the
parameter ‘‘a’’ was obtained in [57], needs to be confirmed. In fact,
the present shear deformation theory firstly clarifies the previous
mentioned theory [57], and presents a new more precise theory
for laminated composite sandwich plates and shell structures.

To formally address the shear deformation theory, assume with
the following displacement field:
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where u(n1,n2; t), v(n1,n2; t), w(n1,n2; t), /1(n1,n2; t) and /2(n1,n2; t)
are the five unknown displacement functions of the middle surface
of the panel while ‘‘f(n3)’’ represents shape functions determining
the distribution of the transverse shear strains and stresses along
the thickness.

Surveys of various shear deformation theories for plates (which
can be adapted to shells) can be found in the works of Idibi et al.
[52], Karama et al. [54], Aydogdu [57]. The shape functions developed
by different researchers are presented chronologically as follow:
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Karama et al. [55] and Aydogdu [57],
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In this paper, as abovementioned, a new shear deformation
theory is developed. Following procedures similar to the ones
presented by Reddy and Liu [24] or the generalized procedure
developed by Soldatos [51] that satisfies tangential stress-free
boundary conditions at the top and bottom surfaces of the panel,
the new displacement field presented here is given as follows:
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By comparing the Eqs. (9a-b) with (1a-b), f(n3) becomes,

f ðn3Þ ¼ n3m�2ðn3=hÞ2 þ yn3; m P 0; y ¼ 0: ð10Þ

The function f(n3) in Eq. (10) is m dependent and therefore it
needs to be calculated or selected. It is obtained after several com-
putations of the shell or plate governing Eqs. (21a-e), to give the
maximum center plate deflection which gives closest results com-
pared to 3D elasticity bending solutions provided by Srinivas [62].
Calculation of the parameter will further be discussed after speci-
fying the shell or plate governing equations.

The starting point of the present thick shell theory is the three-
dimensional elasticity theory, expressed in general curvilinear
(reference) surface-parallel coordinates; while the thickness coor-
dinate is normal to the reference (middle) surface as given in Fig. 1.
The strain–displacement relations, based on this formulation, are
written as follows [71]:
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Fig. 1. Laminate geometry with positive set of lamina/laminate reference axes,
displacement components and fiber orientation.
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