Chinese Journal of Natural Medicines 2012, 10(1): 0024-0027

Chinese Journal of Natural Medicines

A new eudesmane sesquiterpenoid lactone from Chloranthus japonicus

FANG Ping-Lei^{1, 2}, LIU Hai-Yang^{1*}, ZHONG Hui-Min²

Available online 20 Jan. 2012

[ABSTRACT] AIM: To study the chemical constituents of the whole plant of *Chloranthus japonicus*. METHODS: Compounds were isolated and purified by column chromatography. Their structures were elucidated on the basis of spectroscopic methods. RESULTS: Six sesquiterpenoids were obtained and their structures were identified as chlojaponilactone A (1), atractylenolide III (2), neolitacumone B (3), 10α-hydroxy-1-oxoeremophila-7(11), 8(9)-diene-8, 12-olide (4), shizukanolide C (5), and shizukanolide H (6). CONCLUSION: Compound 1 is a new eudesmane-type sesquiterpenoid lactone, and compounds 3 and 4 have been isolated from this species for the first time.

[KEY WORDS] Chloranthus japonicus; Chemical constituents; Sesquiterpenoid; Eudesmane

[CLC Number] R284.1 [Document code] A [Article ID] 1672-3651(2012)01-0024-04

1 Introduction

The genus *Chloranthus* (Chloranthaceae), which includes ca. 15 species, is mainly distributed in the east of Asia^[1]. Sesquiterpenoid is the major constituent of the *Chloranthus* genus and a series of sesquiterpenoid and sesquiterpenoid oligomers were isolated from this genus previously^[2-11], some of which were reported to exhibit antifungal activity^[6], potent and selective inhibition on the delayed rectifier (I_K) K^+ current^[7-8], and inhibition on the expression of cell adhesion molecules^[12]. The perennial herbaceous plant *Chloranthus japonicus* with a Chinese name *yinxiancao* is used as a folk medicine for the treatment of traumatic injuries, rheumatic arthralgia, fractures, pulmonary tuberculosis, and neurasthenia since ancient time^[13]. In order to explore bio-

[Received on] 31-Mar.-2011

[Research funding] This project was supported by the National Natural Science Funding of China (No. 81072543), and the Key Project of Knowledge Innovation Project of CAS (No. KSCX2-EW-Q-10).

[*Corresponding author] LIU Hai-Yang: Associate Prof., Tel: 86-871-5223246, E-mail: haiyangliu@mail.kib.ac.cn
These authors have no any conflict of interest to declare.
Copyright © 2012, China Pharmaceutical University.
Published by Elsevier B.V. All rights reserved

logically active substances from this plant, we studied the chemical constituents from the whole plants of *C. japonicus*. As a result, six sesquiterpenoids were isolated and their structures and relative configurations were elucidated on the basis of spectroscopic analysis and comparison with the related compounds reported in literature, including a new eudesmane-type sesquiterpenoid chlojaponilactone A (1) and five known sesquiterpenoids, atractylenolide III (2)^[14], neolitacumone B (3)^[15], 10α -hydroxy-1-oxoeremophila-7(11), 8(9)-diene-8, 12-olide (4)^[16], shizukanolide C (5)^[2-3], and shizukanolide H (6)^[10] (Fig. 1).



Fig. 1 Structures of compounds 1-6

2 Results and Discussion

Chlojaponilactone A (1) was obtained as a white amorphous powder, displaying a molecular formula of $C_{15}H_{20}O_3$ as determined by HREI-MS at m/z 249.148 4 $[M + H]^+$

¹ State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China;

² College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

(Calcd. 249.149 0) and indicating 6 degrees of unsaturation. The absorption bands in the IR spectrum at 1 739 and 1 698 cm⁻¹, and the UV maximum at 239 nm indicated the presence of an α , β -unsaturated γ -lactone moiety in 1 ^[17]. Its ¹H NMR spectrum showed three methyl singlets at δ_H 1.01, 1.68, and 1.73, one olefinic proton at $\delta_{\rm H}$ 5.34 (br s) (Table 1). The ¹³C NMR spectrum displayed 15 carbon signals comprising three methyl, four methylene, one methine, one quaternary carbon, one ester carbonyl at δ_C 171.9, one hemiacetal at δ_C 104.1, and four olefinic carbons (Table 1). The above spectroscopic analysis indicated that 1 is an eudesm-7(11)-enolide sesquiterpene. Comprehensive analysis of NMR and mass spectra suggested that 1 was a double bond isomer of atractylenolide III (2)[14]. The position of the 3,4-double bond was supported by the HMBC correlations from Me-15 (δ_H 1.68, s) to C-3 (δ_C 121.6, d), C-4 (δ_C 133.1, s), and C-5 (δ_C 48.3, d). Moreover, the HMBC correlations from Me-13 (δ_H 1.73, s) to C-7 (δ_C 161.5, s), C-11 (δ_C 120.9, s), and C-12 (δ_C 171.9, s), from H₂-9 to C-7 ($\delta_{\rm C}$ 161.5, s), C-8 ($\delta_{\rm C}$ 104.1, s), and C-10 (δ_C 33.1, s), and from OH-8 (δ_H 7.22, s) to C-7 (δ_C 161.5, s), C-8 (δ_C 104.1, s), and C-9 (δ_C 50.3, t) confirmed the hemiacetal located at C-8 (δ_C 104.1, s) and the presence of a γ-lactone moiety between C-8 and C-12. The relative configuration of 1 was established by a ROESY experiment, in which the correlations H-1 α /H-5, H-1 α /H-9 α , and H-5/H-6 α indicated that they were cofacial and were arbitrarily assigned having an α-orientation. Consequently, the ROESY correlations of Me-14 with H-6\beta, and OH-8 suggested that they were β -oriented. Therefore, the structure of 1 was elucidated as 8β -droxyeudesm-3, 7(11)-dien-12, 8α -olide.

Table 1 NMR data for Compound 1 in DMSO-d₆ (400 MHz)

		•	* ()
Position	$\delta_{\rm H}$ (J in Hz)	$\delta_{\rm C}$	HMBC
1α	1.38 (m)	36.9 (t)	C-2, C-3, C-5, C-10
1β	1.27 (m)		C-2, C-5, C-10, C-14
2α	2.05 (m)	22.4 (t)	C-1, C-3, C-4, C-10
2β	1.94 (m)		C-1, C-3, C-4, C-10
3	5.34 (br s)	121.6 (d)	C-1, C-2, C-4, C-5, C-15
4		133.1 (s)	
5	1.92 (m)	48.3 (d)	C-1, C-3, C-7, C-9, C-10, C-14, C-15
6α	2.80 (dd, 12.9, 3.0)	23.9 (t)	C-4, C-5, C-7, C-8, C-10, C-11
6β	2.10 (d, 12.9)		C-4, C-5, C-7, C-8, C-10, C-11
7		161.5 (s)	
8		104.1 (s)	
9α	2.09 (d, 13.3)	50.3 (t)	C-5, C-7, C-8, C-10, C-14
9β	1.33 (d, 13.3)		C-1, C-8, C-10, C-14
10		33.1 (s)	
11		120.9 (s)	
12		171.9 (s)	
13	1.73 (s)	8.0 (q)	C-7, C-8, C-11, C-12
14	1.01 (s)	15.8 (q)	C-1, C-5, C-9, C-10
15	1.68 (s)	21.1 (q)	C-3, C-4, C-5
-ОН	7.22 (s)		C-5, C-7, C-8, C-9

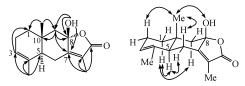


Fig. 2 Selected HMBC (\rightarrow) and ROESY (\leftrightarrow) correlations of chlojaponilactone A (1).

3 Experimental

3.1 General experimental procedures

Optical rotations were taken on a Horiba SEAP-300 polarimeter. UV spectra were obtained on a Shimadzu UV-2401PC spectrophotometer. IR spectra were measured with a Bio-Rad FTS-135 spectrometer with KBr pellets. NMR spectra were run on Bruker AM-400 and DRX-500 instruments. FABMS was performed on a VG Auto Spec-3000 spectrometer. ESI-MS and HRESI-MS were performed on an APIQSTAR time-of-flight spectrometer. Column chromatography was performed on silica gel (48-75 μm, Qindao Marine Chemical Inc., Qingdao, China), or Rp-18 gel (LiChroprep, 40-63 µm, Merck, Darmstadt, Germany), or Sephadex LH-20 (Amersham Biosciences, Sweden). Fractions were monitored by thin layer chromatography (TLC), and spots were detected with a UV 254 nm lamp and by spraying with 10% H₂SO₄ in EtOH followed by heating at 105 °C for 5 min.

3.2 Plant material.

The whole plants of *C. japonicus* were collected in August 2008 from Panshi, Jilin Province, China and identified by Dr. LIU En-De of Kunming Institute of Botany. A voucher sample (No. HY0003) was deposited at the State Key Laboratory of Phytochemistry and Plant Resources in West China.

3.3 Extraction and isolation.

The dried and powdered plant material (10.5 kg) was extracted three times with MeOH under reflux. The filtrate was evaporated under reduced pressure to give a residue (800 g), which was subsequently subjected to silica gel chromatography eluted with EtOAc to yield 426 g eluate, which was passed through a column containing MCI gel, eluted with MeOH-H₂O mixtures in a gradient $(3:7\rightarrow 5:5\rightarrow 7:3\rightarrow 1:$ 0). The 70% MeOH fraction (109.4 g) was chromatographed over a silica gel column eluted with CHCl3-MeOH (100 : $1\rightarrow 80: 1\rightarrow 60: 1\rightarrow 40: 1$) to yield six fractions A-F. Fraction B was then subjected to column chromatography over silica gel eluted with CHCl₃-MeOH (150 : $1\rightarrow 120$: $1\rightarrow 80$: $1\rightarrow60$: 1) to afford 1 (40 mg) and 2 (55 mg). Fraction C (21.1 g) was subjected to column chromatography over a Rp-18 column eluted with a MeOH-H₂O gradient system (35%, 40%, 45%, 50%, and 55%) to obtain eight fractions, C₁-C₈. Compound 4 (20 mg) powder was obtained from C₁. Fraction E was subjected to column chromatography over silica gel eluted with CHCl₃-MeOH (130 : 1→120 : 1→100 : $1\rightarrow 60:1$) to afford compound 3 (19 mg). The 50% MeOH

Download English Version:

https://daneshyari.com/en/article/2526888

Download Persian Version:

https://daneshyari.com/article/2526888

<u>Daneshyari.com</u>